The Stacks project

Lemma 48.33.1. Let $p : U \to \mathop{\mathrm{Spec}}(k)$ be separated of finite type where $k$ is a field. Let $\omega _{U/k}^\bullet = p^!\mathcal{O}_{\mathop{\mathrm{Spec}}(k)}$. There are canonical isomorphisms

\[ \mathop{\mathrm{Hom}}\nolimits _ k(H^ i(U, K), k) = H^{-i}_ c(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(K, \omega _{U/k}^\bullet )) \]

of topological $k$-vector spaces functorial for $K$ in $D^ b_{\textit{Coh}}(\mathcal{O}_ U)$.

Proof. Choose a compactification $j : U \to X$ over $k$. Let $\mathcal{I} \subset \mathcal{O}_ X$ be a quasi-coherent ideal sheaf with $V(\mathcal{I}) = X \setminus U$. By Derived Categories of Schemes, Proposition 36.11.2 we may choose $M \in D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ with $K = M|_ U$. We have

\[ H^ i(U, K) = \mathop{\mathrm{Ext}}\nolimits ^ i_ U(\mathcal{O}_ U, M|_ U) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{I}^ n, M) = \mathop{\mathrm{colim}}\nolimits H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, M)) \]

by Lemma 48.30.1. Since $\mathcal{I}^ n$ is a coherent $\mathcal{O}_ X$-module, we have $\mathcal{I}^ n$ in $D^-_{\textit{Coh}}(\mathcal{O}_ X)$, hence $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, M)$ is in $D^+_{\textit{Coh}}(\mathcal{O}_ X)$ by Derived Categories of Schemes, Lemma 36.11.5.

Let $\omega _{X/k}^\bullet = q^!\mathcal{O}_{\mathop{\mathrm{Spec}}(k)}$ where $q : X \to \mathop{\mathrm{Spec}}(k)$ is the structure morphism, see Section 48.27. We find that

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ k( & H^ i(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, M)), k) \\ & = \mathop{\mathrm{Ext}}\nolimits ^{-i}_ X(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{I}^ n, M), \omega _{X/k}^\bullet ) \\ & = H^{-i}(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, M), \omega _{X/k}^\bullet )) \end{align*}

by Lemma 48.27.1. By Lemma 48.2.4 part (1) the canonical map

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega _{X/k}^\bullet ) \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{I}^ n \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}( \mathcal{I}^ n, M), \omega _{X/k}^\bullet ) \]

is an isomorphism. Observe that $\omega ^\bullet _{U/k} = \omega ^\bullet _{X/k}|_ U$ because $p^!$ is constructed as $q^!$ composed with restriction to $U$. Hence $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega _{X/k}^\bullet )$ is an object of $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$ which restricts to $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ U}(K, \omega _{U/k}^\bullet )$ on $U$. Hence by Lemma 48.30.11 we conclude that

\[ \mathop{\mathrm{lim}}\nolimits H^{-i}(X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega _{X/k}^\bullet ) \otimes _{\mathcal{O}_ X}^\mathbf {L} \mathcal{I}^ n) \]

is an avatar for the right hand side of the equality of the lemma. Combining all the isomorphisms obtained in this manner we get the isomorphism of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G5A. Beware of the difference between the letter 'O' and the digit '0'.