Lemma 36.13.2. Let $X$ be a Noetherian scheme and let $j : U \to X$ be an open immersion. The functor $D^ b_{\textit{Coh}}(\mathcal{O}_ X) \to D^ b_{\textit{Coh}}(\mathcal{O}_ U)$ is essentially surjective.
Proof. Let $K$ be an object of $D^ b_{\textit{Coh}}(\mathcal{O}_ U)$. By Proposition 36.11.2 we can represent $K$ by a bounded complex $\mathcal{F}^\bullet $ of coherent $\mathcal{O}_ U$-modules. Say $\mathcal{F}^ i = 0$ for $i \not\in [a, b]$ for some $a \leq b$. Since $j$ is quasi-compact and separated, the terms of the bounded complex $j_*\mathcal{F}^\bullet $ are quasi-coherent modules on $X$, see Schemes, Lemma 26.24.1. We inductively pick a coherent submodule $\mathcal{G}^ i \subset j_*\mathcal{F}^ i$ as follows. For $i = a$ we pick any coherent submodule $\mathcal{G}^ a \subset j_*\mathcal{F}^ a$ whose restriction to $U$ is $\mathcal{F}^ a$. This is possible by Properties, Lemma 28.22.2. For $i > a$ we first pick any coherent submodule $\mathcal{H}^ i \subset j_*\mathcal{F}^ i$ whose restriction to $U$ is $\mathcal{F}^ i$ and then we set $\mathcal{G}^ i = \mathop{\mathrm{Im}}(\mathcal{H}^ i \oplus \mathcal{G}^{i - 1} \to j_*\mathcal{F}^ i)$. It is clear that $\mathcal{G}^\bullet \subset j_*\mathcal{F}^\bullet $ is a bounded complex of coherent $\mathcal{O}_ X$-modules whose restriction to $U$ is $\mathcal{F}^\bullet $ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)