Lemma 15.101.6. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M^\bullet $ be a bounded complex of finite $A$-modules. The inverse system of maps
defines an isomorphism of pro-objects of $D(A)$.
Lemma 15.101.6. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M^\bullet $ be a bounded complex of finite $A$-modules. The inverse system of maps
defines an isomorphism of pro-objects of $D(A)$.
Proof. Choose generators $f_1, \ldots , f_ r \in I$ of $I$. The inverse system $I^ n$ is pro-isomorphic to the inverse system $(f_1^ n, \ldots , f_ r^ n)$ in the category of $A$-modules. With notation as in Lemma 15.101.5 we find that it suffices to prove the inverse system of maps
defines an isomorphism of pro-objects of $D(A)$. Say we have $a \leq b$ such that $M^ i = 0$ if $i \not\in [a, b]$. Then source and target of the arrows above have cohomology only in degrees $[-r + a, b]$. Thus it suffices to show that for any $p \in \mathbf{Z}$ the inverse system of maps
defines an isomorphism of pro-objects of $A$-modules, see Derived Categories, Lemma 13.42.5. Using the pro-isomorphism between $I_ n^\bullet \otimes _ A^\mathbf {L} M^\bullet $ and $I^ n \otimes _ A^\mathbf {L} M^\bullet $ and the pro-isomorphism between $(f_1^ n, \ldots , f_ r^ n)M^\bullet $ and $I^ nM^\bullet $ this is equivalent to showing that the inverse system of maps
defines an isomorphism of pro-objects of $A$-modules Choose a bounded above complex of finite free $A$-modules $P^\bullet $ and a quasi-isomorphism $P^\bullet \to M^\bullet $. Then it suffices to show that the inverse system of maps
is a pro-isomorphism. This follows from Lemma 15.101.1 as $H^ p(P^\bullet ) = H^ p(M^\bullet )$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)