The Stacks project

63.11 Derived upper shriek

We obtain $Rf^!$ by a Brown representability theorem.

Lemma 63.11.1. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion coefficient ring. The functor $Rf_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda )$ has a right adjoint $Rf^! : D(Y_{\acute{e}tale}, \Lambda ) \to D(X_{\acute{e}tale}, \Lambda )$.

Proof. This follows from Injectives, Proposition 19.15.2 and Lemma 63.10.1 above. $\square$

Lemma 63.11.2. Let $f : X \to Y$ be a separated quasi-finite morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion coefficient ring. The functor $Rf^! : D(Y_{\acute{e}tale}, \Lambda ) \to D(X_{\acute{e}tale}, \Lambda )$ of Lemma 63.11.1 is the same as the functor $Rf^!$ of Lemma 63.7.1.

Proof. Follows from uniqueness of adjoints as $Rf_! = f_!$ by Lemma 63.10.3. $\square$

Lemma 63.11.3. Let $j : U \to X$ be a separated étale morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion coefficient ring. The functor $Rj^! : D(X_{\acute{e}tale}, \Lambda ) \to D(U_{\acute{e}tale}, \Lambda )$ is equal to $j^{-1}$.

Proof. This is true because both $Rj^!$ and $j^{-1}$ are right adjoints to $Rj_! = j_!$. See for example Lemmas 63.11.2 and 63.6.2. $\square$

Lemma 63.11.4. Let $f : X \to Y$ be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion ring. The functor $Rf^!$ sends $D^+(Y_{\acute{e}tale}, \Lambda )$ into $D^+(X_{\acute{e}tale}, \Lambda )$. More precisely, there exists an integer $N \geq 0$ such that if $K \in D(Y_{\acute{e}tale}, \Lambda )$ has $H^ i(K) = 0$ for $i < a$ then $H^ i(Rf^!K) = 0$ for $i < a - N$.

Proof. Let $N$ be the integer found in Lemma 63.10.2. By construction, for $K \in D(Y_{\acute{e}tale}, \Lambda )$ and $L \in \in D(X_{\acute{e}tale}, \Lambda )$ we have $\mathop{\mathrm{Hom}}\nolimits _ X(L, Rf^!K) = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K)$. Suppose $H^ i(K) = 0$ for $i < a$. Then we take $L = \tau _{\leq a - N - 1}Rf^!K$. By Lemma 63.10.2 the complex $Rf_!L$ has vanishing cohomology sheaves in degrees $\leq a - 1$. Hence $\mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K) = 0$ by Derived Categories, Lemma 13.27.3. Hence the canonical map $\tau _{\leq a - N - 1}Rf^!K \to Rf^!K$ is zero which implies $H^ i(Rf^!K) = 0$ for $i \leq a - N - 1$. $\square$

Let $f : X \to Y$ be a separated finite type morphism of quasi-separated and quasi-compact schemes. Let $\Lambda $ be a torsion coefficient ring. For every $K \in D(Y_{\acute{e}tale}, \Lambda )$ and $L \in D(X_{\acute{e}tale}, \Lambda )$ we obtain a canonical map

63.11.4.1
\begin{equation} \label{more-etale-equation-sheafy-trace} Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K) \end{equation}

Namely, this map is constructed as the composition

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, Rf_!Rf^!K) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K) \]

where the first arrow is Remark 63.10.9 and the second arrow is the counit $Rf_!Rf^!K \to K$ of the adjunction.

Lemma 63.11.5. Let $f : X \to Y$ be a separated finite type morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion ring. For every $K \in D(Y_{\acute{e}tale}, \Lambda )$ and $L \in D(X_{\acute{e}tale}, \Lambda )$ the map (63.11.4.1)

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K) \]

is an isomorphism.

Proof. To prove the lemma we have to show that for any $M \in D(Y_{\acute{e}tale}, \Lambda )$ the map (63.11.4.1) induces an bijection

\[ \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K)) \]

To see this we use the following string of equalities

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) & = \mathop{\mathrm{Hom}}\nolimits _ X(f^{-1}M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(f^{-1}M \otimes _\Lambda ^\mathbf {L} L, Rf^!K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!(f^{-1}M \otimes _\Lambda ^\mathbf {L} L), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M \otimes _\Lambda ^\mathbf {L} Rf_!L, K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K)) \end{align*}

The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second equality by Cohomology on Sites, Lemma 21.35.2. The third equality by construction of $Rf^!$. The fourth equality by Lemma 63.10.7 (this is the important step). The fifth by Cohomology on Sites, Lemma 21.35.2. $\square$

Lemma 63.11.6. Let $f : X \to Y$ be a separated finite type morphism of quasi-separated and quasi-compact schemes. Let $\Lambda $ be a torsion ring. For every $K \in D(Y_{\acute{e}tale}, \Lambda )$ and $L \in D(X_{\acute{e}tale}, \Lambda )$ the map (63.11.4.1) induces an isomorphism

\[ R\mathop{\mathrm{Hom}}\nolimits _ X(L, Rf^!K) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K) \]

of global derived homs.

Proof. By the construction in Cohomology on Sites, Section 21.36 we have

\[ R\mathop{\mathrm{Hom}}\nolimits _ X(L, Rf^!K) = R\Gamma (X, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) = R\Gamma (Y, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) \]

(the second equality by Leray) and

\[ R\mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K) = R\Gamma (Y, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K)) \]

Thus the lemma is a consequence of Lemma 63.11.5. $\square$

Lemma 63.11.7. Consider a cartesian square

\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

of quasi-compact and quasi-separated schemes with $f$ separated and of finite type. Then we have $Rf^! \circ Rg_* = Rg'_* \circ R(f')^!$.

Proof. By uniqueness of adjoint functors this follows from base change for derived lower shriek: we have $g^{-1} \circ Rf_! = Rf'_! \circ (g')^{-1}$ by Lemma 63.9.4. $\square$

Remark 63.11.8. Let $\Lambda _1 \to \Lambda _2$ be a homomorphism of torsion rings. Let $f : X \to Y$ be a separated finite type morphism of quasi-compact and quasi-separated schemes. The diagram

\[ \xymatrix{ D(X_{\acute{e}tale}, \Lambda _2) \ar[r]_{res} & D(X_{\acute{e}tale}, \Lambda _1) \\ D(Y_{\acute{e}tale}, \Lambda _2) \ar[r]^{res} \ar[u]^{Rf^!} & D(Y_{\acute{e}tale}, \Lambda _1) \ar[u]_{Rf^!} } \]

commutes where $res$ is the “restriction” functor which turns a $\Lambda _2$-module into a $\Lambda _1$-module using the given ring map. This holds by uniquenss of adjoints, the second commutative diagram of Remark 63.10.8 and because we have

\[ \mathop{\mathrm{Hom}}\nolimits _{\Lambda _2}(K_1 \otimes _{\Lambda _1}^\mathbf {L} \Lambda _2, K_2) = \mathop{\mathrm{Hom}}\nolimits _{\Lambda _1}(K_1, res(K_2)) \]

This equality either for objects living over $X_{\acute{e}tale}$ or on $Y_{\acute{e}tale}$ is a very special case of Cohomology on Sites, Lemma 21.19.1.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G2B. Beware of the difference between the letter 'O' and the digit '0'.