The Stacks project

15.85 The naive cotangent complex

In this section we continue the discussion started in Algebra, Section 10.134. We begin with a discussion of base change. The first lemma shows that taking the naive tensor product of the naive cotangent complex with a ring extension isn't quite as naive as one might think.

Lemma 15.85.1. Let $R \to S$ and $S \to S'$ be ring maps. The canonical map $\mathop{N\! L}\nolimits _{S/R} \otimes _ S^\mathbf {L} S' \to \mathop{N\! L}\nolimits _{S/R} \otimes _ S S'$ induces an isomorphism $\tau _{\geq -1}(\mathop{N\! L}\nolimits _{S/R} \otimes _ S^\mathbf {L} S') \to \mathop{N\! L}\nolimits _{S/R} \otimes _ S S'$ in $D(S')$. Similarly, given a presentation $\alpha $ of $S$ over $R$ the canonical map $\mathop{N\! L}\nolimits (\alpha ) \otimes _ S^\mathbf {L} S' \to \mathop{N\! L}\nolimits (\alpha ) \otimes _ S S'$ induces an isomorphism $\tau _{\geq -1}(\mathop{N\! L}\nolimits (\alpha ) \otimes _ S^\mathbf {L} S') \to \mathop{N\! L}\nolimits (\alpha ) \otimes _ S S'$ in $D(S')$.

Proof. Special case of Lemma 15.84.6. $\square$

Lemma 15.85.2. Let $R \to S$ and $R \to R'$ be ring maps. Let $\alpha : P \to S$ be a presentation of $S$ over $R$. Then $\alpha ' : P \otimes _ R R' \to S \otimes _ R R'$ is a presentation of $S' = S \otimes _ R R'$ over $R'$. The canonical map

\[ NL(\alpha ) \otimes _ S S' \to \mathop{N\! L}\nolimits (\alpha ') \]

is an isomorphism on $H^0$ and surjective on $H^{-1}$. In particular, the canonical map

\[ \mathop{N\! L}\nolimits _{S/R} \otimes _ S S' \to \mathop{N\! L}\nolimits _{S'/R'} \]

is an isomorphism on $H^0$ and surjective on $H^{-1}$.

Proof. Denote $I = \mathop{\mathrm{Ker}}(P \to S)$. Denote $P' = P \otimes _ R R'$ and $I' = \mathop{\mathrm{Ker}}(P' \to S')$. Suppose $P$ is a polynomial algebra on $x_ j$ for $j \in J$. The map displayed in the lemma becomes

\[ \xymatrix{ \bigoplus _{j \in J} S' \text{d}x_ j \ar[r] & \bigoplus _{j \in J} S' \text{d}x_ j \\ I/I^2 \otimes _ S S' \ar[r] \ar[u] & I'/(I')^2 \ar[u] } \]

where the left column is $\mathop{N\! L}\nolimits (\alpha ) \otimes _ S S'$ and the right column is $\mathop{N\! L}\nolimits (\alpha ')$. By right exactness of tensor product we see that $I \otimes _ R R' \to I'$ is surjective. Hence the bottom arrow is a surjection. This proves the first statement of the lemma. The statement for $\mathop{N\! L}\nolimits _{S/R} \otimes _ S S' \to \mathop{N\! L}\nolimits _{S'/R'}$ follows as these complexes are homotopic to $\mathop{N\! L}\nolimits (\alpha ) \otimes _ S S'$ and $\mathop{N\! L}\nolimits (\alpha ')$. $\square$

Lemma 15.85.3. Consider a cocartesian diagram of rings

\[ \xymatrix{ B \ar[r] & B' \\ A \ar[r] \ar[u] & A' \ar[u] } \]

If $B$ is flat over $A$, then the canonical map $\mathop{N\! L}\nolimits _{B/A} \otimes _ B B' \to \mathop{N\! L}\nolimits _{B'/A'}$ is a quasi-isomorphism. If in addition $\mathop{N\! L}\nolimits _{B/A}$ has tor-amplitude in $[-1, 0]$ then $\mathop{N\! L}\nolimits _{B/A} \otimes _ B^\mathbf {L} B' \to \mathop{N\! L}\nolimits _{B'/A'}$ is a quasi-isomorphism too.

Proof. Choose a presentation $\alpha : P \to B$ as in Algebra, Section 10.134. Let $I = \mathop{\mathrm{Ker}}(\alpha )$. Set $P' = P \otimes _ A A'$ and denote $\alpha ' : P' \to B'$ the corresponding presentation of $B'$ over $A'$. As $B$ is flat over $A$ we see that $I' = \mathop{\mathrm{Ker}}(\alpha ')$ is equal to $I \otimes _ A A'$. Hence

\[ I'/(I')^2 = \mathop{\mathrm{Coker}}(I^2 \otimes _ A A' \to I \otimes _ A A') = I/I^2 \otimes _ A A' = I/I^2 \otimes _ B B' \]

We have $\Omega _{P'/A'} = \Omega _{P/A} \otimes _ A A'$ because both sides have the same basis. It follows that $\Omega _{P'/A'} \otimes _{P'} B' = \Omega _{P/A} \otimes _ P B \otimes _ B B'$. This proves that $\mathop{N\! L}\nolimits (\alpha ) \otimes _ B B' \to \mathop{N\! L}\nolimits (\alpha ')$ is an isomorphism of complexes and hence the first statement holds.

We have

\[ \mathop{N\! L}\nolimits (\alpha ) = I/I^2 \longrightarrow \Omega _{P/A} \otimes _ P B \]

as a complex of $B$-modules with $I/I^2$ placed in degree $-1$. Since the term in degree $0$ is free, this complex has tor-amplitude in $[-1, 0]$ if and only if $I/I^2$ is a flat $B$-module, see Lemma 15.66.2. If this holds, then $\mathop{N\! L}\nolimits (\alpha ) \otimes _ B^\mathbf {L} B' = \mathop{N\! L}\nolimits (\alpha ) \otimes _ B B'$ and we get the second statement. $\square$

Lemma 15.85.4. Let $A \to B$ be a local complete intersection as in Definition 15.33.2. Then $\mathop{N\! L}\nolimits _{B/A}$ is a perfect object of $D(B)$ with tor amplitude in $[-1, 0]$.

Proof. Write $B = A[x_1, \ldots , x_ n]/I$. Then $\mathop{N\! L}\nolimits _{B/A}$ is represented by the complex

\[ I/I^2 \longrightarrow \bigoplus B \text{d}x_ i \]

of $B$-modules with $I/I^2$ placed in degree $-1$. Since the term in degree $0$ is finite free, this complex has tor-amplitude in $[-1, 0]$ if and only if $I/I^2$ is a flat $B$-module, see Lemma 15.66.2. By definition $I$ is a Koszul regular ideal and hence a quasi-regular ideal, see Section 15.32. Thus $I/I^2$ is a finite projective $B$-module (Lemma 15.32.3) and we conclude both that $\mathop{N\! L}\nolimits _{B/A}$ is perfect and that it has tor amplitude in $[-1, 0]$. $\square$

Lemma 15.85.5. Consider a cocartesian diagram of rings

\[ \xymatrix{ B \ar[r] & B' \\ A \ar[r] \ar[u] & A' \ar[u] } \]

If $A \to B$ and $A' \to B'$ are local complete intersections as in Definition 15.33.2, then the kernel of $H^{-1}(\mathop{N\! L}\nolimits _{B/A} \otimes _ B B') \to H^{-1}(\mathop{N\! L}\nolimits _{B'/A'})$ is a finite projective $B'$-module.

Proof. By Lemma 15.85.4 the complexes $\mathop{N\! L}\nolimits _{B/A}$ and $\mathop{N\! L}\nolimits _{B'/A'}$ are perfect of tor-amplitude in $[-1, 0]$. Combining Lemmas 15.85.1, 15.74.9, and 15.66.13 we have $\mathop{N\! L}\nolimits _{B/A} \otimes _ B B' = \mathop{N\! L}\nolimits _{B/A} \otimes _ B^\mathbf {L} B'$ and this complex is also perfect of tor-amplitude in $[-1, 0]$. Choose a distinguished triangle

\[ C \to \mathop{N\! L}\nolimits _{B/A} \otimes _ B B' \to \mathop{N\! L}\nolimits _{B'/A'} \to C[1] \]

in $D(B')$. By Lemmas 15.74.4 and 15.66.5 we conclude that $C$ is perfect with tor-amplitude in $[-1, 1]$. By Lemma 15.85.2 the complex $C$ has only one nonzero cohomology module, namely the module of the lemma sitting in degree $-1$. This module is of finite presentation (Lemma 15.64.4) and flat (Lemma 15.66.6). Hence it is finite projective by Algebra, Lemma 10.78.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FUX. Beware of the difference between the letter 'O' and the digit '0'.