Lemma 24.25.1. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ be a sheaf of graded algebras on $(\mathcal{C}, \mathcal{O})$. There exists a set $T$ and for each $t \in T$ an injective map $\mathcal{N}_ t \to \mathcal{N}'_ t$ of graded $\mathcal{A}$-modules such that an object $\mathcal{I}$ of $\textit{Mod}(\mathcal{A})$ is injective if and only if for every solid diagram
a dotted arrow exists in $\textit{Mod}(\mathcal{A})$ making the diagram commute.
Comments (0)