Lemma 24.23.6. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ be a differential graded $\mathcal{A}$-algebra. Let $\mathcal{S}$ be a sheaf of graded sets on $\mathcal{C}$. Then the free graded module $\mathcal{A}[\mathcal{S}]$ on $\mathcal{S}$ endowed with differential as in Remark 24.23.5 is a good differential graded $\mathcal{A}$-module.
Proof. Let $\mathcal{N}$ be a left graded $\mathcal{A}$-module. Then we have
where $\mathcal{N}[\mathcal{S}$ is the graded $\mathcal{O}$-module whose degree $n$ part is the sheaf associated to the presheaf
It is clear that $\mathcal{N} \to \mathcal{N}[\mathcal{S}]$ is an exact functor, hence $\mathcal{A}[\mathcal{S}$ is flat as a graded $\mathcal{A}$-module. Next, suppose that $\mathcal{N}$ is a differential graded left $\mathcal{A}$-module. Then we have
as graded sheaves of $\mathcal{O}$-modules, which by the flatness (over $\mathcal{O})$ is equal to
as a graded $\mathcal{O}$-module. Hence if $\mathcal{N}$ is acyclic, then $\mathcal{A}[\mathcal{S}] \otimes _\mathcal {A} \mathcal{N}$ is acyclic.
Finally, consider a morphism $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ of ringed topoi, a differential graded $\mathcal{O}'$-algebra $\mathcal{A}'$, and a map $\varphi : f^{-1}\mathcal{A} \to \mathcal{A}'$ of differential graded $f^{-1}\mathcal{O}$-algebras. Then it is straightforward to see that
which finishes the proof that our module is good. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)