Lemma 24.23.3. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{A}$ be a sheaf of differential graded algebras on $(\mathcal{C}, \mathcal{O})$. An arbitrary direct sum of good differential graded $\mathcal{A}$-modules is good. A filtered colimit of good differential graded $\mathcal{A}$-modules is good.
Proof. Omitted. Hint: direct sums and filtered colimits commute with tensor products and with pullbacks. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)