The Stacks project

Lemma 50.3.2. Let $p : X \to S$ be a morphism of schemes. If $p$ is quasi-compact and quasi-separated, then $Rp_*\Omega ^\bullet _{X/S}$ is an object of $D_\mathit{QCoh}(\mathcal{O}_ S)$.

Proof. There is a spectral sequence with first page $E_1^{a, b} = R^ bp_*\Omega ^ a_{X/S}$ converging to the cohomology of $Rp_*\Omega ^\bullet _{X/S}$ (see Derived Categories, Lemma 13.21.3). Hence by Homology, Lemma 12.25.3 it suffices to show that $R^ bp_*\Omega ^ a_{X/S}$ is quasi-coherent. This follows from Cohomology of Schemes, Lemma 30.4.5. $\square$


Comments (2)

Comment #6516 by zhang on

The two 's should be ""; or change "" to ""

There are also:

  • 3 comment(s) on Section 50.3: de Rham cohomology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FLX. Beware of the difference between the letter 'O' and the digit '0'.