The Stacks project

50.9 First Chern class in de Rham cohomology

Let $X \to S$ be a morphism of schemes. There is a map of complexes

\[ \text{d}\log : \mathcal{O}_ X^*[-1] \longrightarrow \Omega ^\bullet _{X/S} \]

which sends the section $g \in \mathcal{O}_ X^*(U)$ to the section $\text{d}\log (g) = g^{-1}\text{d}g$ of $\Omega ^1_{X/S}(U)$. Thus we can consider the map

\[ \mathop{\mathrm{Pic}}\nolimits (X) = H^1(X, \mathcal{O}_ X^*) = H^2(X, \mathcal{O}_ X^*[-1]) \longrightarrow H^2_{dR}(X/S) \]

where the first equality is Cohomology, Lemma 20.6.1. The image of the isomorphism class of the invertible module $\mathcal{L}$ is denoted $c^{dR}_1(\mathcal{L}) \in H^2_{dR}(X/S)$.

We can also use the map $\text{d}\log : \mathcal{O}_ X^* \to \Omega ^1_{X/S}$ to define a Chern class in Hodge cohomology

\[ c_1^{Hodge} : \mathop{\mathrm{Pic}}\nolimits (X) \longrightarrow H^1(X, \Omega ^1_{X/S}) \subset H^2_{Hodge}(X/S) \]

These constructions are compatible with pullbacks.

Lemma 50.9.1. Given a commutative diagram

\[ \xymatrix{ X' \ar[r]_ f \ar[d] & X \ar[d] \\ S' \ar[r] & S } \]

of schemes the diagrams

\[ \xymatrix{ \mathop{\mathrm{Pic}}\nolimits (X') \ar[d]_{c_1^{dR}} & \mathop{\mathrm{Pic}}\nolimits (X) \ar[d]^{c_1^{dR}} \ar[l]^{f^*} \\ H^2_{dR}(X'/S') & H^2_{dR}(X/S) \ar[l]_{f^*} } \quad \xymatrix{ \mathop{\mathrm{Pic}}\nolimits (X') \ar[d]_{c_1^{Hodge}} & \mathop{\mathrm{Pic}}\nolimits (X) \ar[d]^{c_1^{Hodge}} \ar[l]^{f^*} \\ H^1(X', \Omega ^1_{X'/S'}) & H^1(X, \Omega ^1_{X/S}) \ar[l]_{f^*} } \]

commute.

Proof. Omitted. $\square$

Let us “compute” the element $c^{dR}_1(\mathcal{L})$ in Čech cohomology (with sign rules for Čech differentials as in Cohomology, Section 20.25). Namely, choose an open covering $\mathcal{U} : X = \bigcup _{i \in I} U_ i$ such that we have a trivializing section $s_ i$ of $\mathcal{L}|_{U_ i}$ for all $i$. On the overlaps $U_{i_0i_1} = U_{i_0} \cap U_{i_1}$ we have an invertible function $f_{i_0i_1}$ such that $f_{i_0i_1} = s_{i_1}|_{U_{i_0i_1}} s_{i_0}|_{U_{i_0i_1}}^{-1}$1. Of course we have

\[ f_{i_1i_2}|_{U_{i_0i_1i_2}} f_{i_0i_2}^{-1}|_{U_{i_0i_1i_2}} f_{i_0i_1}|_{U_{i_0i_1i_2}} = 1 \]

The cohomology class of $\mathcal{L}$ in $H^1(X, \mathcal{O}_ X^*)$ is the image of the Čech cohomology class of the cocycle $\{ f_{i_0i_1}\} $ in $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{O}_ X^*)$. Therefore we see that $c_1^{dR}(\mathcal{L})$ is the image of the cohomology class associated to the Čech cocycle $\{ \alpha _{i_0 \ldots i_ p}\} $ in $\text{Tot}(\check{\mathcal{C}}^\bullet (\mathcal{U}, \Omega _{X/S}^\bullet ))$ of degree $2$ given by

  1. $\alpha _{i_0} = 0$ in $\Omega ^2_{X/S}(U_{i_0})$,

  2. $\alpha _{i_0i_1} = f_{i_0i_1}^{-1}\text{d}f_{i_0i_1}$ in $\Omega ^1_{X/S}(U_{i_0i_1})$, and

  3. $\alpha _{i_0i_1i_2} = 0$ in $\mathcal{O}_{X/S}(U_{i_0i_1i_2})$.

Suppose we have invertible modules $\mathcal{L}_ k$, $k = 1, \ldots , a$ each trivialized over $U_ i$ for all $i \in I$ giving rise to cocycles $f_{k, i_0i_1}$ and $\alpha _ k = \{ \alpha _{k, i_0 \ldots i_ p}\} $ as above. Using the rule in Cohomology, Section 20.25 we can compute

\[ \beta = \alpha _1 \cup \alpha _2 \cup \ldots \cup \alpha _ a \]

to be given by the cocycle $\beta = \{ \beta _{i_0 \ldots i_ p}\} $ described as follows

  1. $\beta _{i_0 \ldots i_ p} = 0$ in $\Omega ^{2a - p}_{X/S}(U_{i_0 \ldots i_ p})$ unless $p = a$, and

  2. $\beta _{i_0 \ldots i_ a} = (-1)^{a(a - 1)/2} \alpha _{1, i_0i_1} \wedge \alpha _{2, i_1 i_2} \wedge \ldots \wedge \alpha _{a, i_{a - 1}i_ a}$ in $\Omega ^ a_{X/S}(U_{i_0 \ldots i_ a})$.

Thus this is a cocycle representing $c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_ a)$ Of course, the same computation shows that the cocycle $\{ \beta _{i_0 \ldots i_ a}\} $ in $\check{\mathcal{C}}^ a(\mathcal{U}, \Omega _{X/S}^ a))$ represents the cohomology class $c_1^{Hodge}(\mathcal{L}_1) \cup \ldots \cup c_1^{Hodge}(\mathcal{L}_ a)$

Remark 50.9.2. Here is a reformulation of the calculations above in more abstract terms. Let $p : X \to S$ be a morphism of schemes. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. If we view $\text{d}\log $ as a map

\[ \mathcal{O}_ X^*[-1] \to \sigma _{\geq 1}\Omega ^\bullet _{X/S} \]

then using $\mathop{\mathrm{Pic}}\nolimits (X) = H^1(X, \mathcal{O}_ X^*)$ as above we find a cohomology class

\[ \gamma _1(\mathcal{L}) \in H^2(X, \sigma _{\geq 1}\Omega ^\bullet _{X/S}) \]

The image of $\gamma _1(\mathcal{L})$ under the map $\sigma _{\geq 1}\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}$ recovers $c_1^{dR}(\mathcal{L})$. In particular we see that $c_1^{dR}(\mathcal{L}) \in F^1H^2_{dR}(X/S)$, see Section 50.7. The image of $\gamma _1(\mathcal{L})$ under the map $\sigma _{\geq 1}\Omega ^\bullet _{X/S} \to \Omega ^1_{X/S}[-1]$ recovers $c_1^{Hodge}(\mathcal{L})$. Taking the cup product (see Section 50.7) we obtain

\[ \xi = \gamma _1(\mathcal{L}_1) \cup \ldots \cup \gamma _1(\mathcal{L}_ a) \in H^{2a}(X, \sigma _{\geq a}\Omega ^\bullet _{X/S}) \]

The commutative diagrams in Section 50.7 show that $\xi $ is mapped to $c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_ a)$ in $H^{2a}_{dR}(X/S)$ by the map $\sigma _{\geq a}\Omega ^\bullet _{X/S} \to \Omega ^\bullet _{X/S}$. Also, it follows $c_1^{dR}(\mathcal{L}_1) \cup \ldots \cup c_1^{dR}(\mathcal{L}_ a)$ is contained in $F^ a H^{2a}_{dR}(X/S)$. Similarly, the map $\sigma _{\geq a}\Omega ^\bullet _{X/S} \to \Omega ^ a_{X/S}[-a]$ sends $\xi $ to $c_1^{Hodge}(\mathcal{L}_1) \cup \ldots \cup c_1^{Hodge}(\mathcal{L}_ a)$ in $H^ a(X, \Omega ^ a_{X/S})$.

Remark 50.9.3. Let $p : X \to S$ be a morphism of schemes. For $i > 0$ denote $\Omega ^ i_{X/S, log} \subset \Omega ^ i_{X/S}$ the abelian subsheaf generated by local sections of the form

\[ \text{d}\log (u_1) \wedge \ldots \wedge \text{d}\log (u_ i) \]

where $u_1, \ldots , u_ n$ are invertible local sections of $\mathcal{O}_ X$. For $i = 0$ the subsheaf $\Omega ^0_{X/S, log} \subset \mathcal{O}_ X$ is the image of $\mathbf{Z} \to \mathcal{O}_ X$. For every $i \geq 0$ we have a map of complexes

\[ \Omega ^ i_{X/S, log}[-i] \longrightarrow \Omega ^\bullet _{X/S} \]

because the derivative of a logarithmic form is zero. Moreover, wedging logarithmic forms gives another, hence we find bilinear maps

\[ \wedge : \Omega ^ i_{X/S, log} \times \Omega ^ j_{X/S, log} \longrightarrow \Omega ^{i + j}_{X/S, log} \]

compatible with (50.4.0.1) and the maps above. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Using the map of abelian sheaves $\text{d}\log : \mathcal{O}_ X^* \to \Omega ^1_{X/S, log}$ and the identification $\mathop{\mathrm{Pic}}\nolimits (X) = H^1(X, \mathcal{O}_ X^*)$ we find a canonical cohomology class

\[ \tilde\gamma _1(\mathcal{L}) \in H^1(X, \Omega ^1_{X/S, log}) \]

These classes have the following properties

  1. the image of $\tilde\gamma _1(\mathcal{L})$ under the canonical map $\Omega ^1_{X/S, log}[-1] \to \sigma _{\geq 1}\Omega ^\bullet _{X/S}$ sends $\tilde\gamma _1(\mathcal{L})$ to the class $\gamma _1(\mathcal{L}) \in H^2(X, \sigma _{\geq 1}\Omega ^\bullet _{X/S})$ of Remark 50.9.2,

  2. the image of $\tilde\gamma _1(\mathcal{L})$ under the canonical map $\Omega ^1_{X/S, log}[-1] \to \Omega ^\bullet _{X/S}$ sends $\tilde\gamma _1(\mathcal{L})$ to $c_1^{dR}(\mathcal{L})$ in $H^2_{dR}(X/S)$,

  3. the image of $\tilde\gamma _1(\mathcal{L})$ under the canonical map $\Omega ^1_{X/S, log} \to \Omega ^1_{X/S}$ sends $\tilde\gamma _1(\mathcal{L})$ to $c_1^{Hodge}(\mathcal{L})$ in $H^1(X, \Omega ^1_{X/S})$,

  4. the construction of these classes is compatible with pullbacks,

  5. add more here.

[1] The Čech differential of a $0$-cycle $\{ a_{i_0}\} $ has $a_{i_1} - a_{i_0}$ over $U_{i_0i_1}$.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FLE. Beware of the difference between the letter 'O' and the digit '0'.