Lemma 50.2.1. Let
\[ \xymatrix{ X' \ar[r]_ f \ar[d] & X \ar[d] \\ S' \ar[r] & S } \]
be a cartesian diagram of schemes. Then the maps discussed above induce isomorphisms $f^*\Omega ^ p_{X/S} \to \Omega ^ p_{X'/S'}$.
Lemma 50.2.1. Let
be a cartesian diagram of schemes. Then the maps discussed above induce isomorphisms $f^*\Omega ^ p_{X/S} \to \Omega ^ p_{X'/S'}$.
Proof. Combine Morphisms, Lemma 29.32.10 with the fact that formation of exterior power commutes with base change. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: