Proposition 23.11.3. Let $R$ be a Noetherian ring. Let $I \subset R$ be an ideal which has finite projective dimension and such that $I/I^2$ is finite locally free over $R/I$. Then $I$ is a regular ideal (More on Algebra, Definition 15.32.1).
Variant of [Corollary 1, Vasconcelos]. See also [Iyengar] and [Ferrand-lci].
Proof.
By Algebra, Lemma 10.68.6 it suffices to show that $I_\mathfrak p \subset R_\mathfrak p$ is generated by a regular sequence for every $\mathfrak p \supset I$. Thus we may assume $R$ is local. If $I/I^2$ has rank $r$, then by Lemma 23.11.2 we find a regular sequence $x_1, \ldots , x_ r \in I$ generating $I/I^2$. By Nakayama (Algebra, Lemma 10.20.1) we conclude that $I$ is generated by $x_1, \ldots , x_ r$.
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)