Example 31.9.8. Let $R = \prod _{n \in \mathbf{N}} \mathbf{F}_2$. Let $I \subset R$ be the ideal of elements $a = (a_ n)_{n \in \mathbf{N}}$ almost all of whose components are zero. Let $\mathfrak m$ be a maximal ideal containing $I$. Then $M = R/\mathfrak m$ is a finite flat $R$-module, because $R$ is absolutely flat (More on Algebra, Lemma 15.104.6). Set $S = \mathop{\mathrm{Spec}}(R)$ and $\mathcal{F} = \widetilde{M}$. The closed subschemes of Lemma 31.9.6 are $S = Z_{-1}$, $Z_0 = \mathop{\mathrm{Spec}}(R/\mathfrak m)$, and $Z_ i = \emptyset $ for $i > 0$. But $\text{id} : S \to S$ does not factor through $(S \setminus Z_0) \amalg Z_0$ because $\mathfrak m$ is a nonisolated point of $S$. Thus Lemma 31.9.7 does not hold for finite type modules.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)