The Stacks project

Lemma 45.9.10. Let $k$ be a field. Let $F$ be a field of characteristic $0$. Assume given a $\mathbf{Q}$-linear functor

\[ G : M_ k \longrightarrow \text{graded }F\text{-vector spaces} \]

of symmetric monoidal categories such that $G(\mathbf{1}(1))$ is nonzero only in degree $-2$. Then we obtain data (D0), (D1), (D2), and (D3) satisfying all of (A), (B), and (C) above.

Proof. This proof is the same as the proof of Lemma 45.7.9; we urge the reader to read the proof of that lemma instead.

We obtain a contravariant functor from the category of smooth projective schemes over $k$ to the category of graded $F$-vector spaces by setting $H^*(X) = G(h(X))$. By assumption we have a canonical isomorphism

\[ H^*(X \times Y) = G(h(X \times Y)) = G(h(X) \otimes h(Y)) = G(h(X)) \otimes G(h(Y)) = H^*(X) \otimes H^*(Y) \]

compatible with pullbacks. Using pullback along the diagonal $\Delta : X \to X \times X$ we obtain a canonical map

\[ H^*(X) \otimes H^*(X) = H^*(X \times X) \to H^*(X) \]

of graded vector spaces compatible with pullbacks. This defines a functorial graded $F$-algebra structure on $H^*(X)$. Since $\Delta $ commutes with the commutativity constraint $h(X) \otimes h(X) \to h(X) \otimes h(X)$ (switching the factors) and since $G$ is a functor of symmetric monoidal categories (so compatible with commutativity constraints), and by our convention in Homology, Example 12.17.4 we conclude that $H^*(X)$ is a graded commutative algebra! Hence we get our datum (D1).

Since $\mathbf{1}(1)$ is invertible in the category of motives we see that $G(\mathbf{1}(1))$ is invertible in the category of graded $F$-vector spaces. Thus $\sum _ i \dim _ F G^ i(\mathbf{1}(1)) = 1$. By assumption we only get something nonzero in degree $-2$. Our datum (D0) is the vector space $F(1) = G^{-2}(\mathbf{1}(1))$. Since $G$ is a symmetric monoidal functor we see that $F(n) = G^{-2n}(\mathbf{1}(n))$ for all $n \in \mathbf{Z}$. It follows that

\[ H^{2r}(X)(r) = G^{2r}(h(X)) \otimes G^{-2r}(\mathbf{1}(r)) = G^0(h(X)(r)) \]

a formula we will frequently use below.

Let $X$ be a smooth projective scheme over $k$. By Lemma 45.3.1 we have

\[ \mathop{\mathrm{CH}}\nolimits ^ r(X) \otimes \mathbf{Q} = \text{Corr}^ r(\mathop{\mathrm{Spec}}(k), X) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{1}(-r), h(X)) = \mathop{\mathrm{Hom}}\nolimits (\mathbf{1}, h(X)(r)) \]

Applying the functor $G$ this maps into $\mathop{\mathrm{Hom}}\nolimits (G(\mathbf{1}), G(h(X)(r)))$. By taking the image of $1$ in $G^0(\mathbf{1}) = F$ into $G^0(h(X)(r)) = H^{2r}(X)(r)$ we obtain

\[ \gamma : \mathop{\mathrm{CH}}\nolimits ^ r(X) \otimes \mathbf{Q} \longrightarrow H^{2r}(X)(r) \]

This is the datum (D2).

Let $X$ be a nonempty smooth projective scheme over $k$ which is equidimensional of dimension $d$. By Lemma 45.3.1 we have

\[ \mathop{\mathrm{Mor}}\nolimits (h(X)(d), \mathbf{1}) = \mathop{\mathrm{Mor}}\nolimits ((X, 1, d), (\mathop{\mathrm{Spec}}(k), 1, 0)) = \text{Corr}^{-d}(X, \mathop{\mathrm{Spec}}(k)) = \mathop{\mathrm{CH}}\nolimits _ d(X) \]

Thus the class of the cycle $[X]$ in $\mathop{\mathrm{CH}}\nolimits _ d(X)$ defines a morphism $h(X)(d) \to \mathbf{1}$. Applying $G$ and taking degree $0$ parts we obtain

\[ H^{2d}(X)(d) = G^0(h(X)(d)) \longrightarrow G^0(\mathbf{1}) = F \]

This map $\int _ X : H^{2d}(X)(d) \to F$ is the datum (D3).

Let $X$ be a smooth projective scheme over $k$ which is nonempty and equidimensional of dimension $d$. By Lemma 45.4.9 we know that $h(X)(d)$ is a left dual to $h(X)$. Hence $G(h(X)(d)) = H^*(X) \otimes _ F F(d)[2d]$ is a left dual to $H^*(X)$ in the category of graded $F$-vector spaces. Here $[n]$ is the shift functor on graded vector spaces. By Homology, Lemma 12.17.5 we find that $\sum _ i \dim _ F H^ i(X) < \infty $ and that $\epsilon : h(X)(d) \otimes h(X) \to \mathbf{1}$ produces nondegenerate pairings $H^{2d - i}(X)(d) \otimes _ F H^ i(X) \to F$. In the proof of Lemma 45.4.9 we have seen that $\epsilon $ is given by $[\Delta ]$ via the identifications

\[ \mathop{\mathrm{Hom}}\nolimits (h(X)(d) \otimes h(X), \mathbf{1}) = \text{Corr}^{-d}(X \times X, \mathop{\mathrm{Spec}}(k)) = \mathop{\mathrm{CH}}\nolimits _ d(X \times X) \]

Thus $\epsilon $ is the composition of $[X] : h(X)(d) \to \mathbf{1}$ and $h(\Delta )(d) : h(X)(d) \otimes h(X) \to h(X)(d)$. It follows that the pairings above are given by cup product followed by $\int _ X$. This proves axiom (A).

Axiom (B) follows from the assumption that $G$ is compatible with tensor structures and our construction of the cup product above.

Axiom (C). Our construction of $\gamma $ takes a cycle $\alpha $ on $X$, interprets it a correspondence $a$ from $\mathop{\mathrm{Spec}}(k)$ to $X$ of some degree, and then applies $G$. If $f : Y \to X$ is a morphism of nonempty equidimensional smooth projective schemes over $k$, then $f^!\alpha $ is the pushforward (!) of $\alpha $ by the correspondence $[\Gamma _ f]$ from $X$ to $Y$, see Lemma 45.3.6. Hence $f^!\alpha $ viewed as a correspondence from $\mathop{\mathrm{Spec}}(k)$ to $Y$ is equal to $a \circ [\Gamma _ f]$, see Lemma 45.3.1. Since $G$ is a functor, we conclude $\gamma $ is compatible with pullbacks, i.e., axiom (C)(a) holds.

Let $f : Y \to X$ be a morphism of nonempty equidimensional smooth projective schemes over $k$ and let $\beta \in \mathop{\mathrm{CH}}\nolimits ^ r(Y)$ be a cycle on $Y$. We have to show that

\[ \int _ Y \gamma (\beta ) \cup f^*c = \int _ X \gamma (f_*\beta ) \cup c \]

for all $c \in H^*(X)$. Let $a, a^ t, \eta _ X, \eta _ Y, [X], [Y]$ be as in Lemma 45.3.9. Let $b$ be $\beta $ viewed as a correspondence from $\mathop{\mathrm{Spec}}(k)$ to $Y$ of degree $r$. Then $f_*\beta $ viewed as a correspondence from $\mathop{\mathrm{Spec}}(k)$ to $X$ is equal to $a^ t \circ b$, see Lemmas 45.3.6 and 45.3.1. The displayed equality above holds if we can show that

\[ h(X) = \mathbf{1} \otimes h(X) \xrightarrow {b \otimes 1} h(Y)(r) \otimes h(X) \xrightarrow {1 \otimes a} h(Y)(r) \otimes h(Y) \xrightarrow {\eta _ Y} h(Y)(r) \xrightarrow {[Y]} \mathbf{1}(r - e) \]

is equal to

\[ h(X) = \mathbf{1} \otimes h(X) \xrightarrow {a^ t \circ b \otimes 1} h(X)(r + d - e) \otimes h(X) \xrightarrow {\eta _ X} h(X)(r + d - e) \xrightarrow {[X]} \mathbf{1}(r - e) \]

This follows immediately from Lemma 45.3.9. Thus we have axiom (C)(b).

To prove axiom (C)(c) we use the discussion in Remark 45.7.2. Hence it suffices to prove that $\gamma $ is compatible with exterior products. Let $X$, $Y$ be nonempty smooth projective schemes over $k$ and let $\alpha $, $\beta $ be cycles on them. Denote $a$, $b$ the corresponding correspondences from $\mathop{\mathrm{Spec}}(k)$ to $X$, $Y$. Then $\alpha \times \beta $ corresponds to the correspondence $a \otimes b$ from $\mathop{\mathrm{Spec}}(k)$ to $X \otimes Y = X \times Y$. Hence the requirement follows from the fact that $G$ is compatible with the tensor structures on both sides.

Axiom (C)(d) follows because the cycle $[\mathop{\mathrm{Spec}}(k)]$ corresponds to the identity morphism on $h(\mathop{\mathrm{Spec}}(k))$. This finishes the proof of the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FHK. Beware of the difference between the letter 'O' and the digit '0'.