Definition 13.28.1. Let $\mathcal{D}$ be a triangulated category. We denote $K_0(\mathcal{D})$ the zeroth $K$-group of $\mathcal{D}$. It is the abelian group constructed as follows. Take the free abelian group on the objects on $\mathcal{D}$ and for every distinguished triangle $X \to Y \to Z$ impose the relation $[Y] - [X] - [Z] = 0$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)