The Stacks project

Lemma 12.9.7 (Jordan-Hölder). Let $\mathcal{A}$ be an abelian category. Let $A$ be an object of $\mathcal{A}$ satisfying the equivalent conditions of Lemma 12.9.6. Given two filtrations

\[ 0 \subset A_1 \subset A_2 \subset \ldots \subset A_ n = A \quad \text{and}\quad 0 \subset B_1 \subset B_2 \subset \ldots \subset B_ m = A \]

with $S_ i = A_ i/A_{i - 1}$ and $T_ j = B_ j/B_{j - 1}$ simple objects we have $n = m$ and there exists a permutation $\sigma $ of $\{ 1, \ldots , n\} $ such that $S_ i \cong T_{\sigma (i)}$ for all $i \in \{ 1, \ldots , n\} $.

Proof. Let $j$ be the smallest index such that $A_1 \subset B_ j$. Then the map $S_1 = A_1 \to B_ j/B_{j - 1} = T_ j$ is an isomorphism. Moreover, the object $A/A_1 = A_ n/A_1 = B_ m/A_1$ has the two filtrations

\[ 0 \subset A_2/A_1 \subset A_3/A_1 \subset \ldots \subset A_ n/A_1 \]

and

\[ 0 \subset (B_1 + A_1)/A_1 \subset \ldots \subset (B_{j - 1} + A_1)/A_1 = B_ j/A_1 \subset B_{j + 1}/A_1 \subset \ldots \subset B_ m/A_1 \]

We conclude by induction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FCK. Beware of the difference between the letter 'O' and the digit '0'.