The Stacks project

Lemma 61.18.2. Let $S$ be a scheme and let $\overline{s} : \mathop{\mathrm{Spec}}(k) \to S$ be a geometric point. The category of pro-étale neighbourhoods of $\overline{s}$ is cofiltered.

Proof. The proof is identitical to the proof of Étale Cohomology, Lemma 59.29.4 but using the corresponding facts about weakly étale morphisms proven in More on Morphisms, Lemmas 37.64.5, 37.64.6, and 37.64.13. $\square$


Comments (0)

There are also:

  • 7 comment(s) on Section 61.18: Points of the pro-étale site

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F6B. Beware of the difference between the letter 'O' and the digit '0'.