Lemma 61.16.3. Let $S$ be a scheme. Consider the morphism
\[ \pi _ S : (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}\longrightarrow S_{pro\text{-}\acute{e}tale} \]
of Lemma 61.12.13. Let $\mathcal{F}$ be a sheaf on $S_{pro\text{-}\acute{e}tale}$. Then $\pi _ S^{-1}\mathcal{F}$ is given by the rule
\[ (\pi _ S^{-1}\mathcal{F})(T) = \Gamma (T_{pro\text{-}\acute{e}tale}, f_{small}^{-1}\mathcal{F}) \]
where $f : T \to S$. Moreover, $\pi _ S^{-1}\mathcal{F}$ satisfies the sheaf condition with respect to fpqc coverings.
Proof.
Observe that we have a morphism $i_ f : \mathop{\mathit{Sh}}\nolimits (T_{pro\text{-}\acute{e}tale}) \to \mathop{\mathit{Sh}}\nolimits (\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})$ such that $\pi _ S \circ i_ f = f_{small}$ as morphisms $T_{pro\text{-}\acute{e}tale}\to S_{pro\text{-}\acute{e}tale}$, see Lemma 61.12.12. Since pullback is transitive we see that $i_ f^{-1} \pi _ S^{-1}\mathcal{F} = f_{small}^{-1}\mathcal{F}$ as desired.
Let $\{ g_ i : T_ i \to T\} _{i \in I}$ be an fpqc covering. The final statement means the following: Given a sheaf $\mathcal{G}$ on $T_{pro\text{-}\acute{e}tale}$ and given sections $s_ i \in \Gamma (T_ i, g_{i, small}^{-1}\mathcal{G})$ whose pullbacks to $T_ i \times _ T T_ j$ agree, there is a unique section $s$ of $\mathcal{G}$ over $T$ whose pullback to $T_ i$ agrees with $s_ i$. We will prove this statement when $T$ is affine and the covering is given by a single surjective flat morphism $T' \to T$ of affines and omit the reduction of the general case to this case.
Let $g : T' \to T$ be a surjective flat morphism of affines and let $s' \in g_{small}^{-1}\mathcal{G}(T')$ be a section with $\text{pr}_0^*s' = \text{pr}_1^*s'$ on $T' \times _ T T'$. Choose a surjective weakly étale morphism $W \to T'$ with $W$ affine and weakly contractible, see Lemma 61.13.5. By Lemma 61.16.2 the restriction $s'|_ W$ is an element of $\mathop{\mathrm{colim}}\nolimits _{W \to U} \mathcal{G}(U)$. Choose $\phi : W \to U_0$ and $s_0 \in \mathcal{G}(U_0)$ corresponding to $s'$. Choose a surjective weakly étale morphism $V \to W \times _ T W$ with $V$ affine and weakly contractible. Denote $a, b : V \to W$ the induced morphisms. Since $a^*(s'|_ W) = b^*(s'|_ W)$ and since the category $\{ V \to U, U \in T_{pro\text{-}\acute{e}tale}\} $ is cofiltered (this is clear but see Sites, Lemma 7.14.6 if in doubt), we see that the two morphisms $\phi \circ a , \phi \circ b : V \to U_0$ have to be equal. By the results in Descent, Section 35.13 (especially Descent, Lemma 35.13.7) it follows there is a unique morphism $T \to U_0$ such that $\phi $ is the composition of this morphism with the structure morphism $W \to T$ (small detail omitted). Then we can let $s$ be the pullback of $s_0$ by this morphism. We omit the verification that $s$ pulls back to $s'$ on $T'$.
$\square$
Comments (0)