Lemma 115.8.26. Let $f : X \to Y$ be a locally quasi-finite morphism of schemes. There exists a unique functor $f^! : \textit{Ab}(Y_{\acute{e}tale}) \to \textit{Ab}(X_{\acute{e}tale})$ such that
for any open $j : U \to X$ with $f \circ j$ separated there is a canonical isomorphism $j^! \circ f^! = (f \circ j)^!$, and
these isomorphisms for $U \subset U' \subset X$ are compatible with the isomorphisms in More Étale Cohomology, Lemma 63.6.3.
Comments (0)