The Stacks project

Lemma 115.8.26. Let $f : X \to Y$ be a locally quasi-finite morphism of schemes. There exists a unique functor $f^! : \textit{Ab}(Y_{\acute{e}tale}) \to \textit{Ab}(X_{\acute{e}tale})$ such that

  1. for any open $j : U \to X$ with $f \circ j$ separated there is a canonical isomorphism $j^! \circ f^! = (f \circ j)^!$, and

  2. these isomorphisms for $U \subset U' \subset X$ are compatible with the isomorphisms in More Étale Cohomology, Lemma 63.6.3.

Proof. Immediate consequence of More Étale Cohomology, Lemmas 63.6.1 and 63.6.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F5D. Beware of the difference between the letter 'O' and the digit '0'.