Lemma 52.27.1. Let $(A, \mathfrak m)$ be a Noetherian local ring and $f \in \mathfrak m$. Assume
$A$ is $f$-adically complete,
$f$ is a nonzerodivisor,
$H^1_\mathfrak m(A/fA)$ and $H^2_\mathfrak m(A/fA)$ are finite $A$-modules, and
$H^3_\mathfrak m(A/fA) = 0$1.
Let $U$, resp. $U_0$ be the punctured spectrum of $A$, resp. $A/fA$. Then
\[ \mathop{\mathrm{colim}}\nolimits _{U_0 \subset U' \subset U\text{ open}} \mathop{\mathrm{Pic}}\nolimits (U') \longrightarrow \mathop{\mathrm{Pic}}\nolimits (U_0) \]
is surjective.
Proof.
Let $U_0 \subset U_ n \subset U$ be the $n$th infinitesimal neighbourhood of $U_0$. Observe that the ideal sheaf of $U_ n$ in $U_{n + 1}$ is isomorphic to $\mathcal{O}_{U_0}$ as $U_0 \subset U$ is the principal closed subscheme cut out by the nonzerodivisor $f$. Hence we have an exact sequence of abelian groups
\[ \mathop{\mathrm{Pic}}\nolimits (U_{n + 1}) \to \mathop{\mathrm{Pic}}\nolimits (U_ n) \to H^2(U_0, \mathcal{O}_{U_0}) = H^3_\mathfrak m(A/fA) = 0 \]
see More on Morphisms, Lemma 37.4.1. Thus every invertible $\mathcal{O}_{U_0}$-module is the restriction of an invertible coherent formal module, i.e., an invertible object of $\textit{Coh}(U, f\mathcal{O}_ U)$. We conclude by applying Lemma 52.24.2.
$\square$
Comments (0)