The Stacks project

Lemma 52.25.2. The quantity $\chi (\mathcal{F}, \mathcal{F}_0, \alpha )$ in (52.25.1.1) does not depend on the choice of $\mathcal{F}', \alpha ', \alpha '_0$ as in Lemma 52.25.1.

Proof. Let $\mathcal{F}', \alpha ', \alpha '_0$ and $\mathcal{F}'', \alpha '', \alpha ''_0$ be two such choices. For $n > 0$ set $\mathcal{F}'_ n = \mathfrak m^ n \mathcal{F}'$. By Cohomology of Schemes, Lemma 30.10.5 for some $n$ there exists an $\mathcal{O}_ X$-module map $\mathcal{F}'_ n \to \mathcal{F}''$ agreeing with the identification $\mathcal{F}''|_ U = \mathcal{F}'|_ U$ determined by $\alpha '$ and $\alpha ''$. Then the diagram

\[ \xymatrix{ \mathcal{F}'_ n/f\mathcal{F}'_ n \ar[r] \ar[d] & \mathcal{F}'/f\mathcal{F}' \ar[d]^{\alpha _0'} \\ \mathcal{F}''/f\mathcal{F}'' \ar[r]^{\alpha _0''} & \mathcal{F}_0 } \]

is commutative after restricting to $U_0$. Hence by Cohomology of Schemes, Lemma 30.10.5 it is commutative after restricting to $\mathfrak m^ l(\mathcal{F}'_ n/f\mathcal{F}'_ n)$ for some $l > 0$. Since $\mathcal{F}'_{n + l}/f\mathcal{F}'_{n + l} \to \mathcal{F}'_ n/f\mathcal{F}'_ n$ factors through $\mathfrak m^ l(\mathcal{F}'_ n/f\mathcal{F}'_ n)$ we see that after replacing $n$ by $n + l$ the diagram is commutative. In other words, we have found a third choice $\mathcal{F}''', \alpha ''', \alpha '''_0$ such that there are maps $\mathcal{F}''' \to \mathcal{F}''$ and $\mathcal{F}''' \to \mathcal{F}'$ over $X$ compatible with the maps over $U$ and $X_0$. This reduces us to the case discussed in the next paragraph.

Assume we have a map $\mathcal{F}'' \to \mathcal{F}'$ over $X$ compatible with $\alpha ', \alpha ''$ over $U$ and with $\alpha '_0, \alpha ''_0$ over $X_0$. Observe that $\mathcal{F}'' \to \mathcal{F}'$ is injective as it is an isomorphism over $U$ and since $f : \mathcal{F}'' \to \mathcal{F}''$ is injective. Clearly $\mathcal{F}'/\mathcal{F}''$ is supported on $\{ \mathfrak m\} $ hence has finite length. We have the maps of coherent $\mathcal{O}_{X_0}$-modules

\[ \mathcal{F}''/f\mathcal{F}'' \to \mathcal{F}'/f\mathcal{F}' \xrightarrow {\alpha '_0} \mathcal{F}_0 \]

whose composition is $\alpha ''_0$ and which are isomorphisms over $U_0$. Elementary homological algebra gives a $6$-term exact sequence

\[ \begin{matrix} 0 \to \mathop{\mathrm{Ker}}(\mathcal{F}''/f\mathcal{F}'' \to \mathcal{F}'/f\mathcal{F}') \to \mathop{\mathrm{Ker}}(\alpha ''_0) \to \mathop{\mathrm{Ker}}(\alpha '_0) \to \\ \mathop{\mathrm{Coker}}(\mathcal{F}''/f\mathcal{F}'' \to \mathcal{F}'/f\mathcal{F}') \to \mathop{\mathrm{Coker}}(\alpha ''_0) \to \mathop{\mathrm{Coker}}(\alpha '_0) \to 0 \end{matrix} \]

By additivity of lengths (Algebra, Lemma 10.52.3) we find that it suffices to show that

\[ \text{length}_ A( \mathop{\mathrm{Coker}}(\mathcal{F}''/f\mathcal{F}'' \to \mathcal{F}'/f\mathcal{F}')) - \text{length}_ A( \mathop{\mathrm{Ker}}(\mathcal{F}''/f\mathcal{F}'' \to \mathcal{F}'/f\mathcal{F}')) = 0 \]

This follows from applying the snake lemma to the diagram

\[ \xymatrix{ 0 \ar[r] & \mathcal{F}'' \ar[r]_ f \ar[d] & \mathcal{F}'' \ar[r] \ar[d] & \mathcal{F}''/f\mathcal{F}'' \ar[r] \ar[d] & 0 \\ 0 \ar[r] & \mathcal{F}' \ar[r]^ f & \mathcal{F}' \ar[r] & \mathcal{F}'/f\mathcal{F}' \ar[r] & 0 } \]

and the fact that $\mathcal{F}'/\mathcal{F}''$ has finite length. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F25. Beware of the difference between the letter 'O' and the digit '0'.