Lemma 59.92.4. Let $X$ be a quasi-compact and quasi-separated scheme. Let $E \in D^+(X_{\acute{e}tale})$ and $K \in D^+(\mathbf{Z})$. Then
Proof. Say $H^ i(E) = 0$ for $i \geq a$ and $H^ j(K) = 0$ for $j \geq b$. We may represent $K$ by a bounded below complex $K^\bullet $ of torsion free $\mathbf{Z}$-modules. (Choose a K-flat complex $L^\bullet $ representing $K$ and then take $K^\bullet = \tau _{\geq b - 1}L^\bullet $. This works because $\mathbf{Z}$ has global dimension $1$. See More on Algebra, Lemma 15.66.2.) We may represent $E$ by a bounded below complex $\mathcal{E}^\bullet $. Then $E \otimes _\mathbf {Z}^\mathbf {L} \underline{K}$ is represented by
Using distinguished triangles
and the trivial vanishing
and
we reduce to the case where $K^\bullet $ is a bounded complex of flat $\mathbf{Z}$-modules. Repeating the argument we reduce to the case where $K^\bullet $ is equal to a single flat $\mathbf{Z}$-module sitting in some degree. Next, using the stupid trunctions for $\mathcal{E}^\bullet $ we reduce in exactly the same manner to the case where $\mathcal{E}^\bullet $ is a single abelian sheaf sitting in some degree. Thus it suffices to show that
when $M$ is a flat $\mathbf{Z}$-module and $\mathcal{E}$ is an abelian sheaf on $X$. In this case we write $M$ is a filtered colimit of finite free $\mathbf{Z}$-modules (Lazard's theorem, see Algebra, Theorem 10.81.4). By Theorem 59.51.3 this reduces us to the case of finite free $\mathbf{Z}$-module $M$ in which case the result is trivially true. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)