The Stacks project

Example 7.14.3. Let $\mathcal{C}$ be a category. Let

\[ \text{Cov}(\mathcal{C}) \supset \text{Cov}'(\mathcal{C}) \]

be two sets of families of morphisms with fixed target which turn $\mathcal{C}$ into a site. Denote $\mathcal{C}_\tau $ the site corresponding to $\text{Cov}(\mathcal{C})$ and $\mathcal{C}_{\tau '}$ the site corresponding to $\text{Cov}'(\mathcal{C})$. We claim the identity functor on $\mathcal{C}$ defines a morphism of sites

\[ \epsilon : \mathcal{C}_\tau \longrightarrow \mathcal{C}_{\tau '} \]

Namely, observe that $\text{id} : \mathcal{C}_{\tau '} \to \mathcal{C}_\tau $ is continuous as every $\tau '$-covering is a $\tau $-covering. Thus the functor $\epsilon _* = \text{id}^ s$ is the identity functor on underlying presheaves. Hence the left adjoint $\epsilon ^{-1}$ of $\epsilon _*$ sends a $\tau '$-sheaf $\mathcal{F}$ to the $\tau $-sheafification of $\mathcal{F}$ (by the universal property of sheafification). Finite limits of $\tau '$-sheaves agree with finite limits of presheaves (Lemma 7.10.1) and $\tau $-sheafification commutes with finite limits (Lemma 7.10.14). Thus $\epsilon ^{-1}$ is left exact. Since $\epsilon ^{-1}$ is a left adjoint it is also right exact (Categories, Lemma 4.24.6). Thus $\epsilon ^{-1}$ is exact and we have checked all the conditions of Definition 7.14.1.


Comments (0)

There are also:

  • 1 comment(s) on Section 7.14: Morphisms of sites

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EWI. Beware of the difference between the letter 'O' and the digit '0'.