The Stacks project

Lemma 59.105.1. Let $X$ be a scheme and let $Z \subset X$ be a closed subscheme cut out by a quasi-coherent ideal of finite type. Consider the corresponding blow up square

\[ \xymatrix{ E \ar[d]_\pi \ar[r]_ j & X' \ar[d]^ b \\ Z \ar[r]^ i & X } \]

For $K \in D^+(X_{\acute{e}tale})$ with torsion cohomology sheaves we have a distinguished triangle

\[ K \to Ri_*(K|_ Z) \oplus Rb_*(K|_{X'}) \to Rc_*(K|_ E) \to K[1] \]

in $D(X_{\acute{e}tale})$ where $c = i \circ \pi = b \circ j$.

Proof. The notation $K|_{X'}$ stands for $b_{small}^{-1}K$. Choose a bounded below complex $\mathcal{F}^\bullet $ of abelian sheaves representing $K$. Observe that $i_*(\mathcal{F}^\bullet |_ Z)$ represents $Ri_*(K|_ Z)$ because $i_*$ is exact (Proposition 59.55.2). Choose a quasi-isomorphism $b_{small}^{-1}\mathcal{F}^\bullet \to \mathcal{I}^\bullet $ where $\mathcal{I}^\bullet $ is a bounded below complex of injective abelian sheaves on $X'_{\acute{e}tale}$. This map is adjoint to a map $\mathcal{F}^\bullet \to b_*(\mathcal{I}^\bullet )$ and $b_*(\mathcal{I}^\bullet )$ represents $Rb_*(K|_{X'})$. We have $\pi _*(\mathcal{I}^\bullet |_ E) = (b_*\mathcal{I}^\bullet )|_ Z$ by Lemma 59.91.5 and by Lemma 59.91.12 this complex represents $R\pi _*(K|_ E)$. Hence the map

\[ Ri_*(K|_ Z) \oplus Rb_*(K|_{X'}) \to Rc_*(K|_ E) \]

is represented by the surjective map of bounded below complexes

\[ i_*(\mathcal{F}^\bullet |_ Z) \oplus b_*(\mathcal{I}^\bullet ) \to i_*\left(b_*(\mathcal{I}^\bullet )|_ Z\right) \]

To get our distinguished triangle it suffices to show that the canonical map $\mathcal{F}^\bullet \to i_*(\mathcal{F}^\bullet |_ Z) \oplus b_*(\mathcal{I}^\bullet )$ maps quasi-isomorphically onto the kernel of the map of complexes displayed above (namely a short exact sequence of complexes determines a distinguished triangle in the derived category, see Derived Categories, Section 13.12). We may check this on stalks at a geometric point $\overline{x}$ of $X$. If $\overline{x}$ is not in $Z$, then $X' \to X$ is an isomorphism over an open neighbourhood of $\overline{x}$. Thus, if $\overline{x}'$ denotes the corresponding geometric point of $X'$ in this case, then we have to show that

\[ \mathcal{F}^\bullet _{\overline{x}} \to \mathcal{I}^\bullet _{\overline{x}'} \]

is a quasi-isomorphism. This is true by our choice of $\mathcal{I}^\bullet $. If $\overline{x}$ is in $Z$, then $b_(\mathcal{I}^\bullet )_{\overline{x}} \to i_*\left(b_*(\mathcal{I}^\bullet )|_ Z\right)_{\overline{x}}$ is an isomorphism of complexes of abelian groups. Hence the kernel is equal to $i_*(\mathcal{F}^\bullet |_ Z)_{\overline{x}} = \mathcal{F}^\bullet _{\overline{x}}$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EW5. Beware of the difference between the letter 'O' and the digit '0'.