Lemma 5.22.3. A limit of profinite spaces is profinite.
Proof. Let $i \mapsto X_ i$ be a diagram of profinite spaces over the index category $\mathcal{I}$. Let us use the characterization of profinite spaces in Lemma 5.22.2. In particular each $X_ i$ is Hausdorff, quasi-compact, and totally disconnected. By Lemma 5.14.1 the limit $X = \mathop{\mathrm{lim}}\nolimits X_ i$ exists. By Lemma 5.14.5 the limit $X$ is quasi-compact. Let $x, x' \in X$ be distinct points. Then there exists an $i$ such that $x$ and $x'$ have distinct images $x_ i$ and $x'_ i$ in $X_ i$ under the projection $X \to X_ i$. Then $x_ i$ and $x'_ i$ have disjoint open neighbourhoods in $X_ i$. Taking the inverse images of these opens we conclude that $X$ is Hausdorff. Similarly, $x_ i$ and $x'_ i$ are in distinct connected components of $X_ i$ whence necessarily $x$ and $x'$ must be in distinct connected components of $X$. Hence $X$ is totally disconnected. This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: