The Stacks project

Similar to [Definition 17.1, F]

Definition 82.26.1. In Situation 82.2.1 let $f : X \to Y$ be a morphism of good algebraic spaces over $B$. Let $p \in \mathbf{Z}$. A bivariant class $c$ of degree $p$ for $f$ is given by a rule which assigns to every morphism $Y' \to Y$ of good algebraic spaces over $B$ and every $k$ a map

\[ c \cap - : \mathop{\mathrm{CH}}\nolimits _ k(Y') \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k - p}(X') \]

where $X' = Y' \times _ Y X$, satisfying the following conditions

  1. if $Y'' \to Y'$ is a proper morphism, then $c \cap (Y'' \to Y')_*\alpha '' = (X'' \to X')_*(c \cap \alpha '')$ for all $\alpha ''$ on $Y''$,

  2. if $Y'' \to Y'$ a morphism of good algebraic spaces over $B$ which is flat of relative dimension $r$, then $c \cap (Y'' \to Y')^*\alpha ' = (X'' \to X')^*(c \cap \alpha ')$ for all $\alpha '$ on $Y'$,

  3. if $(\mathcal{L}', s', i' : D' \to Y')$ is as in Definition 82.22.1 with pullback $(\mathcal{N}', t', j' : E' \to X')$ to $X'$, then we have $c \cap (i')^*\alpha ' = (j')^*(c \cap \alpha ')$ for all $\alpha '$ on $Y'$.

The collection of all bivariant classes of degree $p$ for $f$ is denoted $A^ p(X \to Y)$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ERJ. Beware of the difference between the letter 'O' and the digit '0'.