The Stacks project

Lemma 82.15.2. In Situation 82.2.1 let $X/B$ be good. Let $U \subset X$ be an open subspace. Let $Y$ be the reduced closed subspace of $X$ with $|Y| = |X| \setminus |U|$ and denote $i : Y \to X$ the inclusion morphism. Let $k \in \mathbf{Z}$. Suppose $\alpha , \beta \in Z_ k(X)$. If $\alpha |_ U \sim _{rat} \beta |_ U$ then there exist a cycle $\gamma \in Z_ k(Y)$ such that

\[ \alpha \sim _{rat} \beta + i_*\gamma . \]

In other words, the sequence

\[ \xymatrix{ \mathop{\mathrm{CH}}\nolimits _ k(Y) \ar[r]^{i_*} & \mathop{\mathrm{CH}}\nolimits _ k(X) \ar[r]^{j^*} & \mathop{\mathrm{CH}}\nolimits _ k(U) \ar[r] & 0 } \]

is an exact complex of abelian groups.

Proof. Let $\{ W_ j\} _{j \in J}$ be a locally finite collection of integral closed subspaces of $U$ of $\delta $-dimension $k + 1$, and let $f_ j \in R(W_ j)^*$ be elements such that $(\alpha - \beta )|_ U = \sum (i_ j)_*\text{div}(f_ j)$ as in the definition. Let $W_ j' \subset X$ be the corresponding integral closed subspace of $X$, i.e., having the same generic point as $W_ j$. Suppose that $V \subset X$ is a quasi-compact open. Then also $V \cap U$ is quasi-compact open in $U$ as $V$ is Noetherian. Hence the set $\{ j \in J \mid W_ j \cap V \not= \emptyset \} = \{ j \in J \mid W'_ j \cap V \not= \emptyset \} $ is finite since $\{ W_ j\} $ is locally finite. In other words we see that $\{ W'_ j\} $ is also locally finite. Since $R(W_ j) = R(W'_ j)$ we see that

\[ \alpha - \beta - \sum (i'_ j)_*\text{div}(f_ j) \]

is a cycle on $X$ whose restriction to $U$ is zero. The lemma follows by applying Lemma 82.10.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EQ7. Beware of the difference between the letter 'O' and the digit '0'.