The Stacks project

Lemma 82.11.1. In Situation 82.2.1 let

\[ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^ f \\ Y' \ar[r]^ g & Y } \]

be a fibre product diagram of good algebraic spaces over $B$. Assume $f : X \to Y$ proper and $g : Y' \to Y$ flat of relative dimension $r$. Then also $f'$ is proper and $g'$ is flat of relative dimension $r$. For any $k$-cycle $\alpha $ on $X$ we have

\[ g^*f_*\alpha = f'_*(g')^*\alpha \]

in $Z_{k + r}(Y')$.

Proof. The assertion that $f'$ is proper follows from Morphisms of Spaces, Lemma 67.40.3. The assertion that $g'$ is flat of relative dimension $r$ follows from Morphisms of Spaces, Lemmas 67.34.3 and 67.30.4. It suffices to prove the equality of cycles when $\alpha = [W]$ for some integral closed subspace $W \subset X$ of $\delta $-dimension $k$. Note that in this case we have $\alpha = [\mathcal{O}_ W]_ k$, see Lemma 82.6.3. By Lemmas 82.8.3 and 82.10.5 it therefore suffices to show that $f'_*(g')^*\mathcal{O}_ W$ is isomorphic to $g^*f_*\mathcal{O}_ W$. This follows from cohomology and base change, see Cohomology of Spaces, Lemma 69.11.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EPD. Beware of the difference between the letter 'O' and the digit '0'.