Lemma 82.8.2. In Situation 82.2.1 let $X, Y, Z/B$ be good. Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms over $B$. Then $g_* \circ f_* = (g \circ f)_*$ as maps $Z_ k(X) \to Z_ k(Z)$.
Proof. Let $W \subset X$ be an integral closed subspace of dimension $k$. Consider the integral closed subspaces $W' \subset Y$ and $W'' \subset Z$ we get by applying Lemma 82.7.1 to $f$ and $W$ and then to $g$ and $W'$. Then $W \to W'$ and $W' \to W''$ are surjective and proper. We have to show that $g_*(f_*[W]) = (f \circ g)_*[W]$. If $\dim _\delta (W'') < k$, then both sides are zero. If $\dim _\delta (W'') = k$, then we see $W \to W'$ and $W' \to W''$ both satisfy the hypotheses of Lemma 82.7.4. Hence
Then we can apply Spaces over Fields, Lemma 72.5.3 to conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)