The Stacks project

Lemma 52.19.7. In Situation 52.16.1 let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$ and $d \geq 1$. Assume

  1. $A$ is $I$-adically complete, has a dualizing complex, and $\text{cd}(A, I) \leq d$,

  2. $(\mathcal{F}_ n)$ is the completion of a coherent $\mathcal{O}_ U$-module,

  3. $(\mathcal{F}_ n)$ satisfies the strict $(1, 1 + d)$-inequalities.

Then there exists a unique coherent $\mathcal{O}_ U$-module $\mathcal{F}$ whose completion is $(\mathcal{F}_ n)$ such that for $x \in U$ with $\overline{\{ x\} } \cap Y \subset Z$ we have $\text{depth}(\mathcal{F}_ x) \geq 2$.

Proof. Choose a coherent $\mathcal{O}_ U$-module $\mathcal{F}$ whose completion is $(\mathcal{F}_ n)$. Let $T = \{ x \in U \mid \overline{\{ x\} } \cap Y \subset Z\} $. We will construct $\mathcal{F}$ by applying Local Cohomology, Lemma 51.15.4 with $\mathcal{F}$ and $T$. Then uniqueness will follow from the mapping property of Lemma 52.19.6.

Since $T$ is stable under specialization in $U$ the only thing to check is the following. If $x' \leadsto x$ is an immediate specialization of points of $U$ with $x \in T$ and $x' \not\in T$, then $\text{depth}(\mathcal{F}_{x'}) \geq 1$. Set $W = \overline{\{ x\} }$ and $W' = \overline{\{ x'\} }$. Since $x' \not\in T$ we see that $W' \cap Y$ is not contained in $Z$. If $W' \cap Y$ contains an irreducible component contained in $Z$, then we are done by Lemma 52.19.4. If not, we choose an irreducible component $W_1$ of $W \cap Y$ and an irreducible component $W'_1$ of $W' \cap Y$ with $W_1 \subset W'_1$. Let $z \in W_1$ be the generic point. Let $y \leadsto z$, $y \in W'_1$ be an immediate specialization with $y \not\in Z$; existence of $y$ follows from $W'_1 \not\subset Z$ (see above) and Properties, Lemma 28.6.4. Then we have the following $z \in Z$, $x \leadsto z$, $x' \leadsto y \leadsto z$, $y \in Y \setminus Z$, and $\delta ^ Y_ Z(y) = 1$. By Local Cohomology, Lemma 51.4.10 and the fact that $z$ is a generic point of $W \cap Y$ we have $\dim (\mathcal{O}_{W, z}) \leq d$. Since $x' \leadsto x$ is an immediate specialization we have $\dim (\mathcal{O}_{W', z}) \leq d + 1$. Since $y \not= z$ we conclude $\dim (\mathcal{O}_{W', y}) \leq d$. If $\text{depth}(\mathcal{F}_{x'}) = 0$ then we would get a contradiction with assumption (3); details about passage from $\mathcal{O}_{X, y}$ to its completion omitted. This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EJ8. Beware of the difference between the letter 'O' and the digit '0'.