The Stacks project

Lemma 52.16.9. In Situation 52.16.1 let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$. Let $A \to A'$ be a flat ring map. Set $X' = \mathop{\mathrm{Spec}}(A')$, let $U' \subset X'$ be the inverse image of $U$, and denote $g : U' \to U$ the induced morphism. Set $(\mathcal{F}'_ n) = (g^*\mathcal{F}_ n)$, see Cohomology of Schemes, Lemma 30.23.9. If $(\mathcal{F}_ n)$ canonically extends to $X$, then $(\mathcal{F}'_ n)$ canonically extends to $X'$. Moreover, the extension found in Lemma 52.16.8 for $(\mathcal{F}_ n)$ pulls back to the extension for $(\mathcal{F}'_ n)$.

Proof. Let $f : X' \to X$ be the induced morphism. We have $H^0(U', \mathcal{F}'_ n) = H^0(U, \mathcal{F}_ n) \otimes _ A A'$ by flat base change, see Cohomology of Schemes, Lemma 30.5.2. Thus if $(\mathcal{G}_ n)$ in $\textit{Coh}(X, I\mathcal{O}_ X)$ is pro-isomorphic to $(\widetilde{H^0(U, \mathcal{F}_ n)})$, then $(f^*\mathcal{G}_ n)$ is pro-isomorphic to

\[ (f^*\widetilde{H^0(U, \mathcal{F}_ n)}) = (\widetilde{H^0(U, \mathcal{F}_ n) \otimes _ A A'}) = (\widetilde{H^0(U', \mathcal{F}'_ n)}) \]

This finishes the proof. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EIS. Beware of the difference between the letter 'O' and the digit '0'.