Lemma 52.16.9. In Situation 52.16.1 let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$. Let $A \to A'$ be a flat ring map. Set $X' = \mathop{\mathrm{Spec}}(A')$, let $U' \subset X'$ be the inverse image of $U$, and denote $g : U' \to U$ the induced morphism. Set $(\mathcal{F}'_ n) = (g^*\mathcal{F}_ n)$, see Cohomology of Schemes, Lemma 30.23.9. If $(\mathcal{F}_ n)$ canonically extends to $X$, then $(\mathcal{F}'_ n)$ canonically extends to $X'$. Moreover, the extension found in Lemma 52.16.8 for $(\mathcal{F}_ n)$ pulls back to the extension for $(\mathcal{F}'_ n)$.
Proof. Let $f : X' \to X$ be the induced morphism. We have $H^0(U', \mathcal{F}'_ n) = H^0(U, \mathcal{F}_ n) \otimes _ A A'$ by flat base change, see Cohomology of Schemes, Lemma 30.5.2. Thus if $(\mathcal{G}_ n)$ in $\textit{Coh}(X, I\mathcal{O}_ X)$ is pro-isomorphic to $(\widetilde{H^0(U, \mathcal{F}_ n)})$, then $(f^*\mathcal{G}_ n)$ is pro-isomorphic to
This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)