The Stacks project

15.100 Systems of modules

Let $I$ be an ideal of a Noetherian ring $A$. In this section we add to our knowledge of the relationship between finite modules over $A$ and systems of finite $A/I^ n$-modules.

Lemma 15.100.1. Let $I$ be an ideal of a Noetherian ring $A$. Let $ K \xrightarrow {\alpha } L \xrightarrow {\beta } M $ be a complex of finite $A$-modules. Set $H = \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha )$. For $n \geq 0$ let

\[ K/I^ nK \xrightarrow {\alpha _ n} L/I^ nL \xrightarrow {\beta _ n} M/I^ nM \]

be the induced complex. Set $H_ n = \mathop{\mathrm{Ker}}(\beta _ n)/\mathop{\mathrm{Im}}(\alpha _ n)$. Then there are canonical $A$-module maps giving a commutative diagram

\[ \xymatrix{ & & & H \ar[lld] \ar[ld] \ar[d] \\ \ldots \ar[r] & H_3 \ar[r] & H_2 \ar[r] & H_1 } \]

Moreover, there exists a $c > 0$ and canonical $A$-module maps $H_ n \to H/I^{n - c}H$ for $n \geq c$ such that the compositions

\[ H/I^ n H \to H_ n \to H/I^{n - c}H \quad \text{and}\quad H_ n \to H/I^{n - c}H \to H_{n - c} \]

are the canonical ones. Moreover, we have

  1. $(H_ n)$ and $(H/I^ nH)$ are isomorphic as pro-objects of $\text{Mod}_ A$,

  2. $\mathop{\mathrm{lim}}\nolimits H_ n = \mathop{\mathrm{lim}}\nolimits H/I^ n H$,

  3. the inverse system $(H_ n)$ is Mittag-Leffler,

  4. the image of $H_{n + c} \to H_ n$ is equal to the image of $H \to H_ n$,

  5. the composition $I^ cH_ n \to H_ n \to H/I^{n - c}H \to H_ n/I^{n - c}H_ n$ is the inclusion $I^ cH_ n \to H_ n$ followed by the quotient map $H_ n \to H_ n/I^{n - c}H_ n$, and

  6. the kernel and cokernel of $H/I^ nH \to H_ n$ is annihilated by $I^ c$.

Proof. Observe that $H_ n = \beta ^{-1}(I^ nM)/\mathop{\mathrm{Im}}(\alpha ) + I^ nL$. For $n \geq 2$ we have $\beta ^{-1}(I^ nM) \subset \beta ^{-1}(I^{n - 1}M)$ and $\mathop{\mathrm{Im}}(\alpha ) + I^ nL \subset \mathop{\mathrm{Im}}(\alpha ) + I^{n - 1}L$. Thus we obtain our canonical map $H_ n \to H_{n - 1}$. Similarly, we have $\mathop{\mathrm{Ker}}(\beta ) \subset \beta ^{-1}(I^ nM)$ and $\mathop{\mathrm{Im}}(\alpha ) \subset \mathop{\mathrm{Im}}(\alpha ) + I^ nL$ which produces the canonical map $H \to H_ n$. We omit the verification that the diagram commutes.

By Artin-Rees we may choose $c_1, c_2 \geq 0$ such that $\beta ^{-1}(I^ nM) \subset \mathop{\mathrm{Ker}}(\beta ) + I^{n - c_1}L$ for $n \geq c_1$ and $\mathop{\mathrm{Ker}}(\beta ) \cap I^ nL \subset I^{n - c_2}\mathop{\mathrm{Ker}}(\beta )$ for $n \geq c_2$, see Algebra, Lemmas 10.51.3 and 10.51.2. Set $c = c_1 + c_2$.

Let $n \geq c$. We define $\psi _ n : H_ n \to H/I^{n - c}H$ as follows. Say $x \in H_ n$. Choose $y \in \beta ^{-1}(I^ nM)$ representing $x$. Write $y = z + w$ with $z \in \mathop{\mathrm{Ker}}(\beta )$ and $w \in I^{n - c_1}L$ (this is possible by our choice of $c_1$). We set $\psi _ n(x)$ equal to the class of $z$ in $H/I^{n - c}H$. To see this is well defined, suppose we have a second set of choices $y', z', w'$ as above for $x$ with obvious notation. Then $y' - y \in \mathop{\mathrm{Im}}(\alpha ) + I^ nL$, say $y' - y = \alpha (v) + u$ with $v \in K$ and $u \in I^ nL$. Thus

\[ y' = z' + w' = \alpha (v) + u + z + w \Rightarrow z' = z + \alpha (v) + u + w - w' \]

Since $\beta (z' - z - \alpha (v)) = 0$ we find that $u + w - w' \in \mathop{\mathrm{Ker}}(\beta ) \cap I^{n - c_1}L$ which is contained in $I^{n - c_1 - c_2}\mathop{\mathrm{Ker}}(\beta ) = I^{n - c}\mathop{\mathrm{Ker}}(\beta )$ by our choice of $c_2$. Thus $z'$ and $z$ have the same image in $H/I^{n - c}H$ as desired.

The composition $H/I^ n H \to H_ n \to H/I^{n - c}H$ is the canonical map because if $z \in \mathop{\mathrm{Ker}}(\beta )$ represents an element $x$ in $H/I^ nH = \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ) + I^ n\mathop{\mathrm{Ker}}(\beta )$ then it is clear from the above that $x$ maps to the class of $z$ in $H/I^{n - c}H$ under the maps constructed above.

Let us consider the composition $H_ n \to H/I^{n - c}H \to H_{n - c}$. Given $x, y, z, w$ as in the construction of $\psi _ n$ above, we see that $x$ is mapped to the cass of $z$ in $H_{n - c}$. On the other hand, the canonical map $H_ n \to H_{n - c}$ from the first paragraph of the proof sends $x$ to the class of $y$. Thus we have to show that $y - z \in \mathop{\mathrm{Im}}(\alpha ) + I^{n - c}L$ which is the case because $y - z = w \in I^{n - c_1}L \subset I^{n - c}L$.

Statements (1) – (4) are formal consequences of what we just proved. Namely, (1) follows from the existence of the maps and the definition of morphisms of pro-objects in Categories, Remark 4.22.5. Part (2) holds because isomorphic pro-objects have isomorphic limits. Part (3) is immediate from part (4). Part (4) follows from the factorization $H_{n + c} \to H/I^ nH \to H_ n$ of the canonical map $H_{n + c} \to H_ n$.

Proof of part (5). Let $x \in I^ cH_ n$. Write $x = \sum f_ i x_ i$ with $x_ i \in H_ n$ and $f_ i \in I^ c$. Choose $y_ i, z_ i, w_ i$ as in the construction of $\psi _ n$ for $x_ i$. Then for the computation of $\psi _ n$ of $x$ we may choose $y = \sum f_ iy_ i$, $z = \sum f_ i z_ i$ and $w = \sum f_ i w_ i$ and we see that $\psi _ n(x)$ is given by the class of $z$. The image of this in $H_ n/I^{n - c}H_ n$ is equal to the class of $y$ as $w = \sum f_ i w_ i$ is in $I^ nL$. This proves (5).

Proof of part (6). Let $y \in \mathop{\mathrm{Ker}}(\beta )$ whose class is $x$ in $H$. If $x$ maps to zero in $H_ n$, then $y \in I^ nL + \mathop{\mathrm{Im}}(\alpha )$. Hence $y - \alpha (v) \in \mathop{\mathrm{Ker}}(\beta ) \cap I^ nL$ for some $v \in K$. Then $y - \alpha (v) \in I^{n - c_2}\mathop{\mathrm{Ker}}(\beta )$ and hence the class of $y$ in $H/I^ nH$ is annihilated by $I^{c_2}$. Finally, let $x \in H_ n$ be the class of $y \in \beta ^{-1}(I^ nM)$. Then we write $y = z + w$ with $z \in \mathop{\mathrm{Ker}}(\beta )$ and $w \in I^{n - c_1}L$ as above. Clearly, if $f \in I^{c_1}$ then $fx$ is the class of $fy + fw \equiv fy$ modulo $\mathop{\mathrm{Im}}(\alpha ) + I^ nL$ and hence $fx$ is the image of the class of $fy$ in $H$ as desired. $\square$

reference

Lemma 15.100.2. Let $I$ be an ideal of a Noetherian ring $A$. Let $K \in D(A)$ be pseudo-coherent. Set $K_ n = K \otimes _ A^\mathbf {L} A/I^ n$. Then for all $i \in \mathbf{Z}$ the system $H^ i(K_ n)$ satisfies Mittag-Leffler and $\mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K)$ is equal to $\mathop{\mathrm{lim}}\nolimits H^ i(K_ n)$.

Proof. We may represent $K$ by a bounded above complex $P^\bullet $ of finite free $A$-modules. Then $K_ n$ is represented by $P^\bullet /I^ nP^\bullet $. Hence the Mittag-Leffler property by Lemma 15.100.1. The final statement follows then from Lemma 15.97.6. $\square$

Lemma 15.100.3. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M^\bullet $ be a bounded complex of finite $A$-modules. The inverse system of maps

\[ M^\bullet \otimes _ A^\mathbf {L} A/I^ n \longrightarrow M^\bullet /I^ nM^\bullet \]

defines an isomorphism of pro-objects of $D(A)$.

Proof. Say $I = (f_1, \ldots , f_ r)$. Let $K_ n \in D(A)$ be the object represented by the Koszul complex on $f_1^ n, \ldots , f_ r^ n$. Recall that we have maps $K_ n \to A/I^ n$ which induce a pro-isomorphism of inverse systems, see Lemma 15.94.1. Hence it suffices to show that

\[ M^\bullet \otimes _ A^\mathbf {L} K_ n \longrightarrow M^\bullet /I^ nM^\bullet \]

defines an isomorphism of pro-objects of $D(A)$. Since $K_ n$ is represented by a complex of finite free $A$-modules sitting in degrees $-r, \ldots , 0$ there exist $a, b \in \mathbf{Z}$ such that the source and target of the displayed arrow have vanishing cohomology in degrees outside $[a, b]$ for all $n$. Thus we may apply Derived Categories, Lemma 13.42.5 and we find that it suffices to show that the maps

\[ H^ i(M^\bullet \otimes _ A^\mathbf {L} A/I^ n) \to H^ i(M^\bullet /I^ nM^\bullet ) \]

define isomorphisms of pro-systems of $A$-modules for any $i \in \mathbf{Z}$. To see this choose a quasi-isomorphism $P^\bullet \to M^\bullet $ where $P^\bullet $ is a bounded above complex of finite free $A$-modules. The arrows above are given by the maps

\[ H^ i(P^\bullet /I^ nP^\bullet ) \to H^ i(M^\bullet /I^ nM^\bullet ) \]

These define an isomorphism of pro-systems by Lemma 15.100.1. Namely, the lemma shows both are isomorphic to the pro-system $H^ i/I^ nH^ i$ with $H^ i = H^ i(M^\bullet ) = H^ i(P^\bullet )$. $\square$

Lemma 15.100.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be finite $A$-modules. Set $M_ n = M/I^ nM$ and $N_ n = N/I^ nN$. Then

  1. the systems $(\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n))$ and $(\text{Isom}_ A(M_ n, N_ n))$ are Mittag-Leffler,

  2. there exists a $c \geq 0$ such that the kernels and cokernels of

    \[ \mathop{\mathrm{Hom}}\nolimits _ A(M, N)/I^ n\mathop{\mathrm{Hom}}\nolimits _ A(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) \]

    are killed by $I^ c$ for all $n$,

  3. we have $\mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) =\mathop{\mathrm{Hom}}\nolimits _ A(M, N)^\wedge = \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge )$

  4. $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n) = \text{Isom}_{A^\wedge }(M^\wedge , N^\wedge )$.

Here ${}^\wedge $ denotes usual $I$-adic completion.

Proof. Note that $\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) = \mathop{\mathrm{Hom}}\nolimits _ A(M, N_ n)$. Choose a presentation

\[ A^{\oplus t} \to A^{\oplus s} \to M \to 0 \]

Applying the right exact functor $\mathop{\mathrm{Hom}}\nolimits _ A(-, N)$ we obtain a complex

\[ 0 \xrightarrow {\alpha } N^{\oplus s} \xrightarrow {\beta } N^{\oplus t} \]

whose cohomology in the middle is $\mathop{\mathrm{Hom}}\nolimits _ A(M, N)$ and such that for $n \geq 0$ the cohomology of

\[ 0 \xrightarrow {\alpha _ n} N_ n^{\oplus s} \xrightarrow {\beta _ n} N_ n^{\oplus t} \]

is $\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n)$. Let $c \geq 0$ be as in Lemma 15.100.1 for this $A$, $I$, $\alpha $, and $\beta $. By part (3) of the lemma we deduce the Mittag-Leffler property for $(\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n))$. The kernel and cokernel of the maps $\mathop{\mathrm{Hom}}\nolimits _ A(M, N)/I^ n\mathop{\mathrm{Hom}}\nolimits _ A(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n)$ are killed by $I^ c$ by [art part (6) of the lemma. We find that $\mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) = \mathop{\mathrm{Hom}}\nolimits _ A(M, N)^\wedge $ by part (2) of the lemma. The equality

\[ \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge ) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) \]

follows formally from the fact that $M^\wedge = \mathop{\mathrm{lim}}\nolimits M_ n$ and $M_ n = M^\wedge /I^ nM^\wedge $ and the corresponding facts for $N$, see Algebra, Lemma 10.97.4.

The result for isomorphisms follows from the case of homomorphisms applied to both $(\mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n))$ and $(\mathop{\mathrm{Hom}}\nolimits (N_ n, M_ n))$ and the following fact: for $n > m > 0$, if we have maps $\alpha : M_ n \to N_ n$ and $\beta : N_ n \to M_ n$ which induce an isomorphisms $M_ m \to N_ m$ and $N_ m \to M_ m$, then $\alpha $ and $\beta $ are isomorphisms. Namely, then $\alpha \circ \beta $ is surjective by Nakayama's lemma (Algebra, Lemma 10.20.1) hence $\alpha \circ \beta $ is an isomorphism by Algebra, Lemma 10.16.4. $\square$

Lemma 15.100.5. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be finite $A$-modules. Set $M_ n = M/I^ nM$ and $N_ n = N/I^ nN$. If $M_ n \cong N_ n$ for all $n$, then $M^\wedge \cong N^\wedge $ as $A^\wedge $-modules.

Proof. By Lemma 15.100.4 the system $(\text{Isom}_ A(M_ n, N_ n))$ is Mittag-Leffler. By assumption each of the sets $\text{Isom}_ A(M_ n, N_ n)$ is nonempty. Hence $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n)$ is nonempty. Since $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n) = \text{Isom}_{A^\wedge }(M^\wedge , N^\wedge )$ we obtain an isomorphism. $\square$

Remark 15.100.6. Let $I$ be an ideal of a Noetherian ring $A$. Set $A_ n = A/I^ n$ for $n \geq 1$. Consider the following category:

  1. An object is a sequence $\{ E_ n\} _{n \geq 1}$ where $E_ n$ is a finite $A_ n$-module.

  2. A morphism $\{ E_ n\} \to \{ E'_ n\} $ is given by maps

    \[ \varphi _ n : I^ cE_ n \longrightarrow E'_ n/E'_ n[I^ c] \quad \text{for }n \geq c \]

    where $E'_ n[I^ c]$ is the torsion submodule (Section 15.88) up to equivalence: we say $(c, \varphi _ n)$ is the same as $(c + 1, \overline{\varphi }_ n)$ where $\overline{\varphi }_ n : I^{c + 1}E_ n \longrightarrow E'_ n/E'_ n[I^{c + 1}]$ is the induced map.

Composition of $(c, \varphi _ n) : \{ E_ n\} \to \{ E'_ n\} $ and $(c', \varphi '_ n) : \{ E'_ n\} \to \{ E''_ n\} $ is defined by the obvious compositions

\[ I^{c + c'}E_ n \to I^{c'}E'_ n/E'_ n[I^{c}] \to E''_ n/E''_ n[I^{c + c'}] \]

for $n \geq c + c'$. We omit the verification that this is a category.

Lemma 15.100.7. A morphism $(c, \varphi _ n)$ of the category of Remark 15.100.6 is an isomorphism if and only if there exists a $c' \geq 0$ such that $\mathop{\mathrm{Ker}}(\varphi _ n)$ and $\mathop{\mathrm{Coker}}(\varphi _ n)$ are $I^{c'}$-torsion for all $n \gg 0$.

Proof. We may and do assume $c' \geq c$ and that the $\mathop{\mathrm{Ker}}(\varphi _ n)$ and $\mathop{\mathrm{Coker}}(\varphi _ n)$ are $I^{c'}$-torsion for all $n$. For $n \geq c'$ and $x \in I^{c'}E'_ n$ we can choose $y \in I^ cE_ n$ with $x = \varphi _ n(y) \bmod E'_ n[I^ c]$ as $\mathop{\mathrm{Coker}}(\varphi _ n)$ is annihilated by $I^{c'}$. Set $\psi _ n(x)$ equal to the class of $y$ in $E_ n/E_ n[I^{c'}]$. For a different choice $y' \in I^ cE_ n$ with $x = \varphi _ n(y') \bmod E'_ n[I^ c]$ the difference $y - y'$ maps to zero in $E'_ n/E'_ n[I^ c]$ and hence is annihilated by $I^{c'}$ in $I^ cE_ n$. Thus the maps $\psi _ n : I^{c'}E'_ n \to E_ n/E_ n[I^{c'}]$ are well defined. We omit the verification that $(c', \psi _ n)$ is the inverse of $(c, \varphi _ n)$ in the category. $\square$

reference

Lemma 15.100.8. Let $I$ be an ideal of the Noetherian ring $A$. Let $M$ and $N$ be finite $A$-modules. Write $A_ n = A/I^ n$, $M_ n = M/I^ nM$, and $N_ n = N/I^ nN$. For every $i \geq 0$ the objects

\[ \{ \mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N)/I^ n\mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N)\} _{n \geq 1} \quad \text{and}\quad \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)\} _{n \geq 1} \]

are isomorphic in the category $\mathcal{C}$ of Remark 15.100.6.

Proof. Choose a short exact sequence

\[ 0 \to K \to A^{\oplus r} \to M \to 0 \]

and set $K_ n = K/I^ nK$. For $n \geq 1$ define $K(n) = \mathop{\mathrm{Ker}}(A_ n^{\oplus r} \to M_ n)$ so that we have exact sequences

\[ 0 \to K(n) \to A_ n^{\oplus r} \to M_ n \to 0 \]

and surjections $K_ n \to K(n)$. In fact, by Lemma 15.100.1 there is a $c \geq 0$ and maps $K(n) \to K_ n/I^{n - c}K_ n$ which are “almost inverse”. Since $I^{n - c}K_ n \subset K_ n[I^ c]$ these maps which witness the fact that the systems $\{ K(n)\} _{n \geq 1}$ and $\{ K_ n\} _{n \geq 1}$ are isomorphic in $\mathcal{C}$.

We claim the systems

\[ \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K(n), N_ n)\} _{n \geq 1} \quad \text{and}\quad \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K_ n, N_ n)\} _{n \geq 1} \]

are isomorphic in the category $\mathcal{C}$. Namely, the surjective maps $K_ n \to K(n)$ have kernels annihilated by $I^ c$ and therefore determine maps

\[ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K(n), N_ n) \to \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K_ n, N_ n) \]

whose kernel and cokernel are annihilated by $I^ c$. Hence the claim by Lemma 15.100.7.

For $i \geq 2$ we have isomorphisms

\[ \mathop{\mathrm{Ext}}\nolimits ^{i - 1}_ A(K, N) = \mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N) \quad \text{and}\quad \mathop{\mathrm{Ext}}\nolimits ^{i - 1}_{A_ n}(K(n), N_ n) = \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n) \]

In this way we see that it suffices to prove the lemma for $i = 0, 1$.

For $i = 0, 1$ we consider the commutative diagram

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits (M, N) \ar[r] \ar[dd] & N^{\oplus r} \ar[r]_-\varphi \ar[dd] & \mathop{\mathrm{Hom}}\nolimits (K, N) \ar[r] \ar[d] & \mathop{\mathrm{Ext}}\nolimits ^1(M, N) \ar[r] & 0 \\ & & & \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n) \\ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n) \ar[r] & N_ n^{\oplus r} \ar[r] & \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \ar[r] \ar[u] & \mathop{\mathrm{Ext}}\nolimits ^1(M_ n, N_ n) \ar[r] & 0 } \]

By Lemma 15.100.4 we see that the kernel and cokernel of $\mathop{\mathrm{Hom}}\nolimits (M, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (M, N) \to \mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n)$ and $\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ and are $I^ c$-torsion for some $c \geq 0$ independent of $n$. Above we have seen the cokernel of the injective maps $\mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ are annihilated by $I^ c$ after possibly increasing $c$. For such a $c$ we obtain maps $\delta _ n : I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n\mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n)$ fitting into the diagram (precise formulation omitted). The kernel and cokernel of $\delta _ n$ are annihilated by $I^ c$ after possibly increasing $c$ since we know that the same thing is true for $\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ and $\mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$. Then we can use commutativity of the solid diagram

\[ \xymatrix{ \varphi ^{-1}(I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)) \ar[r]_-\varphi \ar[d] & I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n\mathop{\mathrm{Hom}}\nolimits (K, N) \ar[r] \ar[d]^{\delta _ n} & I^ c\mathop{\mathrm{Ext}}\nolimits ^1(M, N)/I^ n\mathop{\mathrm{Ext}}\nolimits ^1(M, N) \ar[r] \ar@{..>}[d] & 0 \\ N_ n^{\oplus r} \ar[r] & \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \ar[r] & \mathop{\mathrm{Ext}}\nolimits ^1(M_ n, N_ n) \ar[r] & 0 } \]

to define the dotted arrow. A straightforward diagram chase (omitted) shows that the kernel and cokernel of the dotted arrow are annihilated buy $I^ c$ after possibly increasing $c$ one final time. $\square$

Remark 15.100.9. The awkwardness in the statement of Lemma 15.100.8 is partly due to the fact that there are no obvious maps between the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)$ for varying $n$. What we may conclude from the lemma is that there exists a $c \geq 0$ such that for $m \gg n \gg 0$ there are (canonical) maps

\[ I^ c\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ m, N_ m)/I^ n\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ m, N_ m) \to \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)/\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)[I^ c] \]

whose kernel and cokernel are annihilated by $I^ c$. This is the (weak) sense in which we get a system of modules.

Example 15.100.10. Let $k$ be a field. Let $A = k[[x, y]]/(xy)$. By abuse of notation we denote $x$ and $y$ the images of $x$ and $y$ in $A$. Let $I = (x)$. Let $M = A/(y)$. There is a free resolution

\[ \ldots \to A \xrightarrow {y} A \xrightarrow {x} A \xrightarrow {y} A \to M \to 0 \]

We conclude that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_ A(M, N) = N[y]/xN \]

where $N[y] = \mathop{\mathrm{Ker}}(y : N \to N)$. We denote $A_ n = A/I^ n$, $M_ n = M/I^ nM$, and $N_ n = N/I^ nN$. For each $n$ we have a free resolution

\[ \ldots \to A_ n^{\oplus 2} \xrightarrow {y, x^{n - 1}} A_ n \xrightarrow {x} A_ n \xrightarrow {y} A_ n \to M_ n \to 0 \]

We conclude that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_{A_ n}(M_ n, N_ n) = (N_ n[y] \cap N_ n[x^{n - 1}])/xN_ n \]

where $N_ n[y] = \mathop{\mathrm{Ker}}(y : N_ n \to N_ n)$ and $N[x^{n - 1}] = \mathop{\mathrm{Ker}}(x^{n - 1} : N_ n \to N_ n)$. Take $N = A/(y)$. Then we see that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_ A(M, N) = N[y]/xN = N/xN \cong k \]

but

\[ \mathop{\mathrm{Ext}}\nolimits ^2_{A_ n}(M_ n, N_ n) = (N_ n[y] \cap N_ n[x^{n - 1}])/xN_ n = N_ n[x^{n - 1}]/xN_ n = 0 \]

for all $r$ because $N_ n = k[x]/(x^ n)$ and the sequence

\[ N_ n \xrightarrow {x} N_ n \xrightarrow {x^{n - 1}} N_ n \]

is exact. Thus ignoring some kind of $I$-power torsion is necessary to get a result as in Lemma 15.100.8.

reference

Lemma 15.100.11. Let $A \to B$ be a flat homomorphism of Noetherian rings. Let $I \subset A$ be an ideal. Let $M, N$ be $A$-modules. Set $B_ n = B/I^ nB$, $M_ n = M/I^ nM$, $N_ n = N/I^ nN$. If $M$ is flat over $A$, then we have

\[ \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)/I^ n \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n) \]

for all $i \in \mathbf{Z}$.

Proof. Choose a resolution

\[ \ldots \to P_2 \to P_1 \to P_0 \to M \to 0 \]

by finite free $B$-modues $P_ i$. Set $P_{i, n} = P_ i/I^ nP_ i$. Since $M$ and $B$ are flat over $A$, the sequence

\[ \ldots \to P_{2, n} \to P_{1, n} \to P_{0, n} \to M_ n \to 0 \]

is exact. We see that on the one hand the complex

\[ \mathop{\mathrm{Hom}}\nolimits _ B(P_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_1, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_2, N) \to \ldots \]

computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)$ and on the other hand the complex

\[ \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{0, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{1, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{2, n}, N_ n) \to \ldots \]

computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n)$. Since

\[ \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{i, n}, N_ n) = \mathop{\mathrm{Hom}}\nolimits _ B(P_ i, N)/I^ n \mathop{\mathrm{Hom}}\nolimits _ B(P_ i, N) \]

we obtain the result from Lemma 15.100.1 part (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGT. Beware of the difference between the letter 'O' and the digit '0'.