Lemma 82.6.4. In Situation 82.2.1 let $X/B$ be good. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ be a short exact sequence of coherent $\mathcal{O}_ X$-modules. Assume that the $\delta $-dimension of the supports of $\mathcal{F}$, $\mathcal{G}$, and $\mathcal{H}$ are $\leq k$. Then $[\mathcal{G}]_ k = [\mathcal{F}]_ k + [\mathcal{H}]_ k$.
Proof. Let $Z$ be an integral closed subspace of $X$ with $\dim _\delta (Z) = k$. It suffices to show that the coefficients of $Z$ in $[\mathcal{G}]_ k$, $[\mathcal{F}]_ k$, and $[\mathcal{H}]_ k$ satisfy the corresponding additivity. By Lemma 82.6.2 it suffices to show
for any $x \in |X|$. Looking at Definition 82.4.2 this follows immediately from additivity of lengths, see Algebra, Lemma 10.52.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)