The Stacks project

Lemma 31.29.4. Assumptions and notation as in Lemma 31.29.3. If $s$ is nonzero, then every irreducible component of $X \setminus U$ has codimension $1$ in $X$.

Proof. Let $\xi \in X$ be a generic point of an irreducible component $Z$ of $X \setminus U$. After replacing $X$ by an open neighbourhood of $\xi $ we may assume that $Z = X \setminus U$ is irreducible. Since $s : \mathcal{O}_ U \to \mathcal{F}|_ U$ is an isomorphism, if the codimension of $Z$ in $X$ is $\geq 2$, then $s : \mathcal{O}_ X \to \mathcal{F}$ is an isomorphism by Lemma 31.12.12 and Serre's criterion Properties, Lemma 28.12.5. This would mean that $Z = \emptyset $, a contradiction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EBP. Beware of the difference between the letter 'O' and the digit '0'.