Lemma 86.9.6. Let $S$ be a scheme. Consider a cartesian square
of algebraic spaces over $S$. Assume $X \to Y$ is proper, flat, and of finite presentation. Let $(\omega _{X/Y}^\bullet , \tau )$ be a relative dualizing complex for $f$. Then $(L(g')^*\omega _{X/Y}^\bullet , Lg^*\tau )$ is a relative dualizing complex for $f'$.
Comments (0)