The Stacks project

Lemma 86.7.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated algebraic spaces over $S$. The map $Lf^*K \otimes ^\mathbf {L}_{\mathcal{O}_ X} a(L) \to a(K \otimes _{\mathcal{O}_ Y}^\mathbf {L} L)$ defined above for $K, L \in D_\mathit{QCoh}(\mathcal{O}_ Y)$ is an isomorphism if $K$ is perfect. In particular, (86.7.0.1) is an isomorphism if $K$ is perfect.

Proof. Let $K^\vee $ be the “dual” to $K$, see Cohomology on Sites, Lemma 21.48.4. For $M \in D_\mathit{QCoh}(\mathcal{O}_ X)$ we have

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}(Rf_*M, K \otimes ^\mathbf {L}_{\mathcal{O}_ Y} L) & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ Y)}( Rf_*M \otimes ^\mathbf {L}_{\mathcal{O}_ Y} K^\vee , L) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}( M \otimes ^\mathbf {L}_{\mathcal{O}_ X} Lf^*K^\vee , a(L)) \\ & = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(M, Lf^*K \otimes ^\mathbf {L}_{\mathcal{O}_ X} a(L)) \end{align*}

Second equality by the definition of $a$ and the projection formula (Cohomology on Sites, Lemma 21.50.1) or the more general Derived Categories of Spaces, Lemma 75.20.1. Hence the result by the Yoneda lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E5Q. Beware of the difference between the letter 'O' and the digit '0'.