Lemma 53.22.3. Let $k$ be a field. Let $X$ be a proper scheme over $k$ having dimension $1$ and $H^0(X, \mathcal{O}_ X) = k$. Assume the singularities of $X$ are at-worst-nodal. Let $C \subset X$ be a rational tail (Example 53.22.1). For any field extension $K/k$ the base change $C_ K \subset X_ K$ is a finite disjoint union of rational tails.
Proof. Let $x \in C$ and $k' = \kappa (x)$ be as in the example. Observe that $C \cong \mathbf{P}^1_{k'}$ by Proposition 53.10.4. Since $k'/k$ is finite separable, we see that $k' \otimes _ k K = K'_1 \times \ldots \times K'_ n$ is a finite product of finite separable extensions $K'_ i/K$. Set $C_ i = \mathbf{P}^1_{K'_ i}$ and denote $x_ i \in C_ i$ the inverse image of $x$. Then $C_ K = \coprod C_ i$ and $X'_ K \cap C_ i = x_ i$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)