Lemma 76.29.3. Let $S$ be a scheme. Let $f : X \to Y$ and $g : Y' \to Y$ be morphisms of algebraic spaces over $S$. Denote $f' : X' \to Y'$ the base change of $f$ by $g$. Then
\begin{align*} \{ y' \in |Y'| : \text{the fibre of }f' : X' \to Y'\text{ at }y' \text{ is geometrically reduced}\} \\ = g^{-1}(\{ y \in |Y| : \text{the fibre of }f : X \to Y\text{ at }y \text{ is geometrically reduced}\} ). \end{align*}
Proof. For $y' \in |Y'|$ choose a morphism $\mathop{\mathrm{Spec}}(k) \to Y'$ in the equivalence class of $y'$. Then $g(y')$ is represented by the composition $\mathop{\mathrm{Spec}}(k) \to Y' \to Y$. Hence $X' \times _{Y'} \mathop{\mathrm{Spec}}(k) = X \times _ Y \mathop{\mathrm{Spec}}(k)$ and the result follows from the definition. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)