The Stacks project

Lemma 52.16.11. In Situation 52.16.1 let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$. Assume

  1. $I = (f)$ is a principal ideal for a nonzerodivisor $f \in \mathfrak a$,

  2. $\mathcal{F}_ n$ is a finite locally free $\mathcal{O}_ U/f^ n\mathcal{O}_ U$-module,

  3. $H^1_\mathfrak a(A/fA)$ and $H^2_\mathfrak a(A/fA)$ are finite $A$-modules.

Then $(\mathcal{F}_ n)$ extends canonically to $X$. In particular, if $A$ is complete, then $(\mathcal{F}_ n)$ is the completion of a coherent $\mathcal{O}_ U$-module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 52.16.10.

Since $\mathcal{F}_ n$ is locally free over $\mathcal{O}_ U/f^ n\mathcal{O}_ U$ we see that we have short exact sequences $0 \to \mathcal{F}_ n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0$ for all $n$. Thus condition (b) holds by Cohomology, Lemma 20.36.2.

As $f$ is a nonzerodivisor we obtain short exact sequences

\[ 0 \to A/f^ nA \xrightarrow {f} A/f^{n + 1}A \to A/fA \to 0 \]

and we have corresponding short exact sequences $0 \to \mathcal{F}_ n \to \mathcal{F}_{n + 1} \to \mathcal{F}_1 \to 0$. We will use Local Cohomology, Lemma 51.8.2 without further mention. Our assumptions imply that $H^0(U, \mathcal{O}_ U/f\mathcal{O}_ U)$ and $H^1(U, \mathcal{O}_ U/f\mathcal{O}_ U)$ are finite $A$-modules. Hence the same thing is true for $\mathcal{F}_1$, see Local Cohomology, Lemma 51.12.2. Using induction and the short exact sequences we find that $H^0(U, \mathcal{F}_ n)$ are finite $A$-modules for all $n$. In this way we see hypothesis (c) is satisfied.

Finally, as $H^1(U, \mathcal{F}_1)$ is a finite $A$-module we can apply Cohomology, Lemma 20.36.4 to see hypothesis (a) holds. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DXW. Beware of the difference between the letter 'O' and the digit '0'.