Lemma 115.4.14. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. Let $s$ be an integer. Assume
$A$ has a dualizing complex,
if $\mathfrak p \not\in V(I)$ and $V(\mathfrak p) \cap V(I) \not= \{ \mathfrak m\} $, then $\text{depth}_{A_\mathfrak p}(M_\mathfrak p) + \dim (A/\mathfrak p) > s$.
Then there exists an $n > 0$ and an ideal $J \subset A$ with $V(J) \cap V(I) = \{ \mathfrak m\} $ such that $JI^ n$ annihilates $H^ i_\mathfrak m(M)$ for $i \leq s$.
Comments (0)