Lemma 51.15.2. Let $j : U \to X$ be an open immersion of Noetherian schemes. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Assume $\mathcal{F}' = j_*(\mathcal{F}|_ U)$ is coherent. Then $\mathcal{F} \to \mathcal{F}'$ is the unique map of coherent $\mathcal{O}_ X$-modules such that
$\mathcal{F}|_ U \to \mathcal{F}'|_ U$ is an isomorphism,
$\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}'_ x) \geq 2$ for $x \in X$, $x \not\in U$.
If $f : Y \to X$ is a flat morphism with $Y$ Noetherian, then $f^*\mathcal{F} \to f^*\mathcal{F}'$ is the corresponding map for $f^{-1}(U) \subset Y$.
Comments (0)