The Stacks project

Lemma 51.2.6. Let $I \subset I' \subset A$ be finitely generated ideals of a Noetherian ring $A$. Let $M$ be an $A$-module. Let $i \geq 0$ be an integer. Consider the map

\[ \Psi : H^ i_{V(I')}(M) \to H^ i_{V(I)}(M) \]

The following are true:

  1. if $H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is surjective,

  2. if $H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is injective,

  3. if $H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ for all $\mathfrak p \in V(I) \setminus V(I')$, then $\Psi $ is an isomorphism.

Proof. Proof of (1). Let $\xi \in H^ i_{V(I)}(M)$. Since $A$ is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that $\xi $ is the image of some $\xi '' \in H^ i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are done. If not, choose a generic point $\mathfrak p \in V(I'')$ not in $V(I')$. Then we have $H^ i_{V(I'')}(M)_\mathfrak p = H^ i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption. By Lemma 51.2.5 we can increase $I''$ which contradicts maximality.

Proof of (2). Let $\xi ' \in H^ i_{V(I')}(M)$ be in the kernel of $\Psi $. Since $A$ is Noetherian, there exists a largest ideal $I \subset I'' \subset I'$ such that $\xi '$ maps to zero in $H^ i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are done. If not, then choose a generic point $\mathfrak p \in V(I'')$ not in $V(I')$. Then we have $H^{i - 1}_{V(I'')}(M)_\mathfrak p = H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption. By Lemma 51.2.5 we can increase $I''$ which contradicts maximality.

Part (3) is formal from parts (1) and (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DWV. Beware of the difference between the letter 'O' and the digit '0'.