The Stacks project

Lemma 13.30.2. Let $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ be functors of abelian categories such that $F$ is a right adjoint to $G$. Let $K^\bullet $ be a complex of $\mathcal{A}$ and let $M^\bullet $ be a complex of $\mathcal{B}$. If $RF$ is defined at $K^\bullet $ and $LG$ is defined at $M^\bullet $, then there is a canonical isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{B})}(M^\bullet , RF(K^\bullet )) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{A})}(LG(M^\bullet ), K^\bullet ) \]

This isomorphism is functorial in both variables on the triangulated subcategories of $D(\mathcal{A})$ and $D(\mathcal{B})$ where $RF$ and $LG$ are defined.

Proof. This is a special case of the very general Lemma 13.30.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DVC. Beware of the difference between the letter 'O' and the digit '0'.