Lemma 79.15.9. In Situation 79.15.3 assume in addition that $s, t$ are flat and locally of finite presentation. Then there exists a scheme $U'$, a separated étale morphism $U' \to U$, and a point $u' \in U'$ lying over $u$ with $\kappa (u) = \kappa (u')$ such that the restriction $R' = R|_{U'}$ of $R$ to $U'$ is split over $u'$.
Proof. This follows from the construction of $U'$ in the proof of Lemma 79.15.6 because in this case $U' = (R_ s/U, e)_{fin}$ is a scheme separated over $U$ by Lemmas 79.12.14 and 79.12.15. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)