The Stacks project

Lemma 85.10.4. In Situation 85.3.3 let $\mathcal{O}$ be a sheaf of rings. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}_ n)$. Let $\mathcal{F} \in \textit{Mod}(\mathcal{O})$. Then $H^ p(U, \mathcal{F}) = H^ p(U, g_ n^*\mathcal{F})$ where on the left hand side $U$ is viewed as an object of $\mathcal{C}_{total}$.

Proof. Observe that “$U$ viewed as object of $\mathcal{C}_{total}$” is explained by the construction of $\mathcal{C}_{total}$ in Lemma 85.3.1 in case (A) and Lemma 85.3.2 in case (B). In both cases the functor $\mathcal{C}_ n \to \mathcal{C}$ is continuous and cocontinuous, see Lemma 85.3.5, and $g_ n^{-1}\mathcal{O} = \mathcal{O}_ n$ by definition. Hence the result is a special case of Cohomology on Sites, Lemma 21.37.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DH2. Beware of the difference between the letter 'O' and the digit '0'.