Lemma 59.91.13. Let $f : X \to Y$ be a proper morphism of schemes. Let $\overline{y} \to Y$ be a geometric point.
For a torsion abelian sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $(R^ nf_*\mathcal{F})_{\overline{y}} = H^ n_{\acute{e}tale}(X_{\overline{y}}, \mathcal{F}_{\overline{y}})$.
For $E \in D^+(X_{\acute{e}tale})$ with torsion cohomology sheaves we have $(R^ nf_*E)_{\overline{y}} = H^ n_{\acute{e}tale}(X_{\overline{y}}, E|_{X_{\overline{y}}})$.
Comments (2)
Comment #6991 by Marco on
Comment #6992 by Johan on
There are also: