Lemma 15.14.5. Let $A$ be a normal domain. Then $A$ is absolutely integrally closed if and only if its fraction field is algebraically closed.
Proof. Observe that a field is algebraically closed if and only if it is absolutely integrally closed as a ring. Hence the lemma follows from Lemmas 15.14.3 and 15.14.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)