The Stacks project

Lemma 85.18.4. Let $\mathcal{C}$ be a site with equalizers and fibre products. Let $\mathcal{O}_\mathcal {C}$ be a sheaf of rings. Let $K$ be a hypercovering. Let $\mathcal{A} \subset \textit{Mod}(\mathcal{O})$ denote the weak Serre subcategory of cartesian $\mathcal{O}$-modules. Then the functor $La^*$ defines an equivalence

\[ D^+(\mathcal{O}_\mathcal {C}) \longrightarrow D_\mathcal {A}^+(\mathcal{O}) \]

with quasi-inverse $Ra_*$.

Proof. Observe that $\mathcal{A}$ is a weak Serre subcategory by Lemma 85.12.6 (the required hypotheses hold by the discussion in Remark 85.16.5). The equivalence is a formal consequence of the results obtained so far. Use Lemmas 85.18.1 and 85.18.2 and Cohomology on Sites, Lemma 21.28.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DA2. Beware of the difference between the letter 'O' and the digit '0'.