Lemma 85.9.1. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ there is an exact complex
of abelian sheaves on $\mathcal{C}_{total}$.
Consider a simplicial site $\mathcal{C}$ as in Situation 85.3.3. Let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. By Lemma 85.4.2 we obtain a morphism of topoi
and morphisms of topoi $g_ n : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{total})$ as in Lemma 85.3.5. The compositions $a \circ g_ n$ are denoted $a_ n : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$. Furthermore, the simplicial structure gives morphisms of topoi $f_\varphi : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ m)$ such that $a_ n \circ f_\varphi = a_ m$ for all $\varphi : [m] \to [n]$.
Lemma 85.9.1. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ there is an exact complex of abelian sheaves on $\mathcal{C}_{total}$.
Proof. We encourage the reader to read the proof of Lemma 85.8.1 first. We will use Lemma 85.4.2 and the description of the functors $g_{n!}$ in Lemma 85.3.5 without further mention. In particular $g_{n!}(a_ n^{-1}\mathcal{G})$ is the sheaf on $\mathcal{C}_{total}$ whose restriction to $\mathcal{C}_ m$ is the sheaf
As maps of the complex we take $\sum (-1)^ i d^ n_ i$ where $d^ n_ i : g_{n!}(a_ n^{-1}\mathcal{G}) \to g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ is the adjoint to the map $a_ n^{-1}\mathcal{G} \to \bigoplus _{[n - 1] \to [n]} a_ n^{-1}\mathcal{G} = g_ n^{-1}g_{n - 1!}(a_{n - 1}^{-1}\mathcal{G})$ corresponding to the factor labeled with $\delta ^ n_ i : [n - 1] \to [n]$. The map $g_{0!}(a_0^{-1}\mathcal{G}) \to a^{-1}\mathcal{G}$ is adjoint to the identity map of $a_0^{-1}\mathcal{G}$. Then $g_ m^{-1}$ applied to the chain complex in degrees $\ldots , 2, 1, 0$ gives the complex
on $\mathcal{C}_ m$. This is equal to $a_ m^{-1}\mathcal{G}$ tensored over the constant sheaf $\mathbf{Z}$ with the complex
discussed in the proof of Lemma 85.8.1. There we have seen that this complex is homotopy equivalent to $\mathbf{Z}$ placed in degree $0$ which finishes the proof. $\square$
Lemma 85.9.2. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For an abelian sheaf $\mathcal{F}$ on $\mathcal{C}_{total}$ there is a canonical complex on $\mathcal{D}$ which is exact in degrees $-1, 0$ and exact everywhere if $\mathcal{F}$ is injective.
Proof. To construct the complex, by the Yoneda lemma, it suffices for any abelian sheaf $\mathcal{G}$ on $\mathcal{D}$ to construct a complex
functorially in $\mathcal{G}$. To do this apply $\mathop{\mathrm{Hom}}\nolimits (-, \mathcal{F})$ to the exact complex of Lemma 85.9.1 and use adjointness of pullback and pushforward. The exactness properties in degrees $-1, 0$ follow from the construction as $\mathop{\mathrm{Hom}}\nolimits (-, \mathcal{F})$ is left exact. If $\mathcal{F}$ is an injective abelian sheaf, then the complex is exact because $\mathop{\mathrm{Hom}}\nolimits (-, \mathcal{F})$ is exact. $\square$
Lemma 85.9.3. In Situation 85.3.3 let $a_0$ be an augmentation towards a site $\mathcal{D}$ as in Remark 85.4.1. For any $K$ in $D^+(\mathcal{C}_{total})$ there is a spectral sequence $(E_ r, d_ r)_{r \geq 0}$ with converging to $R^{p + q}a_*K$. This spectral sequence is functorial in $K$.
Proof. Let $\mathcal{I}^\bullet $ be a bounded below complex of injectives representing $K$. Consider the double complex with terms
where the horizontal arrows come from Lemma 85.9.2 and the vertical arrows from the differentials of the complex $\mathcal{I}^\bullet $. The rows of the double complex are exact in positive degrees and evaluate to $a_*\mathcal{I}^ q$ in degree $0$. On the other hand, since restriction to $\mathcal{C}_ p$ is exact (Lemma 85.3.5) the complex $\mathcal{I}_ p^\bullet $ represents $K_ p$ in $D(\mathcal{C}_ p)$. The sheaves $\mathcal{I}_ p^ q$ are injective abelian sheaves on $\mathcal{C}_ p$ (Lemma 85.3.6). Hence the cohomology of the columns computes $R^ qa_{p, *}K_ p$. We conclude by applying Homology, Lemmas 12.25.3 and 12.25.4. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)