Lemma 85.5.3. With notation and hypotheses as in Lemma 85.5.2. For $K \in D(\mathcal{C}_{total})$ we have $(g'_ n)^{-1}Rh_{total, *}K = Rh_{n, *}g_ n^{-1}K$.
Proof. Let $\mathcal{I}^\bullet $ be a K-injective complex on $\mathcal{C}_{total}$ representing $K$. Then $g_ n^{-1}K$ is represented by $g_ n^{-1}\mathcal{I}^\bullet = \mathcal{I}_ n^\bullet $ which is K-injective by Lemma 85.3.6. We have $(g'_ n)^{-1}h_{total, *}\mathcal{I}^\bullet = h_{n, *}g_ n^{-1}\mathcal{I}_ n^\bullet $ by Lemma 85.5.2 which gives the desired equality. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)